Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ лаб. ПТ.doc
Скачиваний:
121
Добавлен:
16.05.2015
Размер:
4.96 Mб
Скачать

14 Лабораторная работа №16

Жесткость воды, методы ее определения

Цель работы: познакомиться с понятием жесткости воды; овладеть методиками определения общей, временной (карбонатной) и постоянной (некарбонатной) жесткости воды методами потенциометрического и кислотно-основного титрования.

Оборудование и реактивы: 0,1н. соляная кислота; 0,1н. раствор трилона Б; индикаторы: эриохром черный кристаллический, фенолфталеин, метиловый оранжевый; аммиачный буфер; рН-метр; магнитная мешалка; бюретки; пипетки на 100 мл или мерные цилиндры; колбы на 250 мл и 500 мл; стаканы на 200 – 250 мл; мерные колбы на 200 мл; бумажные фильтры.

14.1 Теоретические пояснения

Природная вода в своем составе всегда содержит различные примеси: соли и газы, механические примеси, находящиеся во взвешенном состоянии, эмульсии, гидрозоли и другие образования. Некоторые соли, присутствующие в воде, вызывают ее жесткость.

Жесткость воды – это совокупность свойств воды, обусловленных присутствием в ней катионов Ca2+ и Mg2+, реже Fe2+.

Содержание в воде большого количества примесей растворимых солей кальция и магния делает ее непригодной для технических целей. Повышенная жесткость воды приводит к образованию накипи в паровых котлах и бытовой посуде. Это ухудшает теплообмен, а, следовательно, приводит к перерасходу топлива, электроэнергии, перегреву металлических поверхностей.

В жесткой воде ухудшается пенообразование и увеличивается расход мыла при стирке, так как часть содержащихся в нем растворимых солей жирных кислот переходит в нерастворимое состояние:

2C17H35COONa + CaSO4 = (C17H35COO)2Ca + Na2SO4.

При этом также ухудшается качество тканей вследствие осаждения на них нерастворимых кальциевых и магниевых солей высших жирных кислот.

В воде с повышенной жесткостью плохо развариваются овощи и мясо, так как катионы кальция образуют с белками нерастворимые соединения. Большая магниевая жесткость придает воде горький вкус.

Суммарное содержание Ca2+ и Mg2+ в воде называется общей жесткостью. Жесткость воды оценивается по-разному. В нашей стране ее чаще всего выражают количеством вещества эквивалентов кальция и магния (в ммоль) в одном литре воды.

Жесткость воды хозяйственно-питьевых водопроводов не должна превышать 7 ммоль экв./л. По величине жесткости воду условно подразделяют на мягкую (до 4 ммоль экв./л), средней жесткости (4 – 8 ммоль экв./л), жесткую (8 – 12 ммоль экв./л) и очень жесткую (более 12 ммоль экв./л).

Общая жесткость складывается из карбонатной (временной) и некарбонатной (постоянной). Карбонатная жесткость обусловлена присутствием в воде гидрокарбонатов кальция, магния, а иногда также и гидрокарбоната железа (II). Этот вид жесткости можно устранить кипячением:

Ca(HCO3)2CaCO3 + H2O + CO2

Mg(HCO3)2MgCO3 + H2O + CO2;

2MgCO3 + H2O(MgOH)2CO3 + CO2

(MgOH)2CO3+H2O2Mg(OH)2 +CO2

Fe(HCO3)2Fe(OH)2 + 2CO2;

4Fe(OH)2 + O2 + 2 H2O 4Fe(OH)3.

При кипячении воды растворенные в ней гидрокарбонаты разлагаются, и карбонатная жесткость сильно снижается, однако полного устранения карбонатной жесткости не происходит вследствие того, что карбонаты кальция и магния несколько растворим в воде.

Наряду с понятием карбонатная жесткость, используется термин устранимая жесткость. Это та величина, на которую понижается жесткость при десятиминутном кипячении воды. Жесткость, оставшаяся после кипячения воды, называется постоянной жесткостью.

Для уменьшения карбонатной жесткости применяют также метод известкования:

Ca(HCO3)2 + Ca(OH)2 2CaCO3 + 2H2O

Mg(HCO3)2 + 2Ca(OH)2 Mg(OH)2 + 2CaCO3 + 2H2O.

Некарбонатная жесткость обусловлена присутствием в воде растворимых, устойчивых к нагреванию солей кальция и магния. Чаще всего это сульфаты и хлориды.

Некарбонатную жесткость можно устранить обработкой воды карбонатом или фосфатом натрия:

MeSO4 + Na2CO3 MeCO3 + Na2SO4.

Для устранения жесткости применяют также катиониты. Это ионообменные смолы и алюмосиликаты, содержащие в своем составе подвижные катионы, например, Na+, H+, способные обмениваться на катионы среды. Если пропускать воду через слои катионита, то его подвижные катионы будут обмениваться на катионы кальция и магния, при этом катионы жесткости остаются в катионите, а подвижные ионы катионита переходят в раствор. При помощи Н+-катионирования умягчают воду с преобладанием карбонатной жесткости, а при помощи Na+-катионирования – с преобладанием некарбонатной жесткости.

Для умягчения воды можно также использовать и физические методы: электродиализ, ультразвуковую, магнитную и магнитно-ионизационную обработку воды.

Жесткость воды определяется аналитически.

Карбонатную (устранимую или временную) жесткость воды определяют титрованием воды соляной кислотой при этом протекают реакции:

Са(НСО3)2 + 2НС1 = CaCI2 + 2H2O + 2СO2

Mg(HCO3)2 + 2НС1 = MgCl2 + 2Н2О + 2СО2

Титрование – это постепенное прибавление к анализируемому раствору раствора реагента точно известной концентрации (титрованный или стандартный раствор, называемый также рабочим раствором или титрантом) в количестве, эквивалентном содержанию определяемого вещества в анализируемом растворе.

Момент титрования, когда количество добавленного титранта химически эквивалентно количеству титруемого вещества, называется точкой эквивалентности.

Титрование жесткой воды соляной кислотой будет сопровождаться изменением рН, поэтому точку эквивалентности можно определить либо потенциометрическим титрованием с помощью рН-метра (определение объема раствора соляной кислоты в точке скачка рН), либо титрованием в присутствии кислотно-основных индикаторов (чаще всего метилового оранжевого).

Зависимость рН титруемого раствора от объема прилитого титранта можно выразить при помощи интегральных кривых титрования. Они могут быть получены либо в результате теоретических расчетов, либо в результате экспериментальных измерений рН при помощи прибора рН-метра.

В качестве примера, на рисунке 14.1 приводится интегральная кривая титрования сильной кислоты сильным основанием.

Рисунок 14.1 – Кривая титрования 0,1н. раствора HCl 0,1н. раствором NaOH

Если титруется 10 мл раствора, то 1% избытка кислоты или щелочи соответствует 0,1 мл. Принимая это во внимание, из рисунка 14.1 следует, что вблизи точки эквивалентности последняя капля титранта вызывает резкое изменение рН. Этот момент в титровании получил название скачка титрования, ему соответствует почти вертикальный участок на кривой титрования сильной кислоты сильным основанием.

За ходом титрования удобно наблюдать визуально по изменению окраски кислотно-основных индикаторов. Это вещества (чаще всего слабые органические кислоты или основания), у которых при изменении рН среды изменяется окраска.

Интервал значений рН, в котором индикатор изменяет свою окраску, называется интервалом перехода индикатора. Для различных индикаторов он различен, так как зависит от константы диссоциации индикатора, а она определяется природой вещества и для различных индикаторов различна.

Для выбора соответствующего кислотно-основного индикатора необходимо построить интегральную кривую титрования на основании данных потенциометрического титрования, а затем выбрать такой индикатор, интервал перехода окраски которого попадает в область скачка рН на кривой титрования. В таблице 14.1 приводятся интервалы перехода окраски для некоторых индикаторов.

Таблица 14.1 – Характеристики наиболее часто применяемых кислотно-основных индикаторов

Индикатор

Интервал перехода окраски,

единицы рН

Изменение окраски раствора при возрастании рН

1

О-крезоловый синий

0,2 - 1,9

красная ® желтая

2

Тимоловый синий

1,2 – 2,8

красная ® желтая

3

Метиловый оранжевый

3,1 – 4,4

красная ® оранжевая

4

Бромкрезоловый зеленый

3,8 – 5,4

желтая ® синяя

5

Бромметиловый зеленый

5,0 – 8,0

желтая ® синяя

6

Лакмус

6,0 –8,0

красна ® синяя

7

Бромтимоловый синий

6,0 – 7,6

желтая ® синяя

8

Феноловый красный

6,8 – 8,4

желтая ® красная

9

Фенолфталеин

8,2 – 10

бесцветная ® малиновая

10

Ализариновый желтый

10,0 – 12,0

бледно-лимонная ® желтая

Некарбонатную (постоянную) жесткость воды определяют методом обратного титрования. К отмеренному объему исследуемой воды добавляют определенный объем раствора карбоната натрия известной концентрации и выпаривают раствор досуха. При этом образуются нерастворимые в воде карбонаты кальция и магния.

Са2+ + Mg2+ + 2Na2CO3 = CaCO3 + MgCO3 + 2Na+

Сухой остаток, представляющий из себя смесь карбонатов кальция, магния, натрия и других солей натрия, растворяют в не содержащей СО2 воде, отфильтровывают нерастворимые в воде карбонаты кальция и магния и титриметрическим способом определяют в растворе количество избыточного Na2CO3, не вошедшего в реакцию осаждения карбонатов. Специальными опытами показано, что при этом Na2CO3 не реагирует с гидрокарбонатами кальция и магния. Именно поэтому, рассмотренный метод позволяет определять постоянную жесткость воды.

Современным методом определения общей жесткости воды является титрование воды раствором трилона Б в присутствии специальных индикаторов-хромогенов, чаще всего эриохрома черного. Титрование проводится в аммиачной среде при значении рН раствора в пределах 9-10.

Трилон Б (комплексон III) – это динатриевая соль этилендиамминтетрауксусной кислоты (NaO2CCH2)2N(CH2)2N(CH2CO2H)2, сокращенно – Na2H2ЭДТА.

Na2H2ЭДТА + Са2+ (или Mg2+) ® Na2CaЭДТА + 2H+.

Хромоген образует с ионами магния и другими ионами относительно непрочные комплексные соединения, окрашенные в красно-фиолетовый цвет. При титровании трилоном Б содержащиеся в воде ионы Са2+ и Mg2+, а также ионы Cu2+, Zn2+, Mn2+, Cd2+, Ni2+, Al3+, Fе2+, Fe3+ реагируют с ним и образуют мало диссоциированные бесцветные прочные комплексные соединения. В конце титрования ионы магния, кальция и другие переходят от комплексного соединения с хромогеном к трилону Б, с образованием прочных бесцветных комплексов.

Поэтому в точке эквивалентности красно-фиолетовая окраска раствора исчезает. Однако раствор не обесцвечивается, а окрашивается в сине-фиолетовый цвет – цвет самого хромогена эриохрома черного при рН = 9-10 (аммиачный буфер). Это указывает на окончание титрования.

Так как трилон Б образует прочные комплексы со всеми катионами кальция и магния вне зависимости от характера аниона, то комплексонометрическим методом определяют именно общую жесткость воды.

Проба воды должна характеризовать действительный ее состав, поэтому при отборе пробы из водопровода воду спускают в течение 10-15 минут. Когда склянка наполнится, воду некоторое время переливают через край.

Из рек и ручьев отбирают пробы воды на глубине 0,75 м в нескольких местах, около берегов и в середине реки. Отдельные пробы смешивают вместе. Анализ воды проводят сразу же после взятия пробы или, в крайнем случае, при соответствующем хранении спустя несколько часов.

14.2 Методика проведения опытов

14.2.1 Опыт №1. Определение карбонатной жесткости воды

Мерным цилиндром отбирают в две конические колбы по 100 мл исследуемой воды из-под крана. Оттитровывают воду в первой колбе 0,1н. раствором НСl. Для этого с помощью рН-метра фиксируют значения рН воды после каждого прибавления очередной порции HCl из бюретки. Объем каждой порции HCl составляет 0,5 мл.

По полученным данным строят интегральную кривую титрования (график зависимости рН от объема прилитой кислоты, в мл). По кривой титрования определяют точку эквивалентности. Пользуясь данными таблицы 14.1 выбирают индикатор для экспресс-анализа. Интервал перехода окраски выбранного индикатора должен находиться в пределах скачка рН на интегральной кривой титрования.

Карбонатную жесткость воды Жкарб., выраженную в ммоль экв./л, определяют по формуле (14.1):

, (14.1)

где V(HCl) – объем раствора 0,1н. НСl, израсходованного до достижения точки эквивалентности, мл;

С(HCl) – концентрация раствора HCl, моль экв./л;

V2О) – объем исследуемой воды, мл;

1000 – коэффициент пересчета от моль к ммоль.

Затем проводят титрование воды во второй колбе 0,1н. раствором НСl. Только на этот раз за ходом титрования следят визуально, по изменению окраски выбранного индикатора. Вблизи точки эквивалентности последняя капля титранта вызывает резкое изменение окраски раствора, содержащего индикатор. Фиксируют объем прибавленной кислоты к моменту достижения точки эквивалентности. Проводят расчет карбонатной жесткости воды по формуле (14.1).

14.2.2 Опыт №2. Определение общей жесткости воды

В коническую колбу отмеряют пипеткой 100 – 150 мл исследуемой воды, добавляют 5 мл аммиачного буфера и несколько кристаллов эриохрома черного до образования заметной вишнево-красной окраски. При слабой окраске раствора проверяют его рН универсальной индикаторной бумагой. Значение рН должно находиться в интервале 8-11. При необходимости корректируют рН добавлением в раствор буферной смеси.

Раствор оттитровывают стандартным раствором трилона Б до точки резкого перехода вишнево-красной окраски в синюю. Окраска раствора от избытка трилона Б остается неизменной, поэтому в конце титрования рабочий раствор трилона Б прибавляют осторожно, по каплям, энергично перемешивая.

Титрование повторить два раза и взять среднее значение объема израсходованного раствора трилона Б.

Общую жесткость воды Жобщ., выраженную в ммоль экв./л, определяют по формуле (14.2):

, (14.2)

где V1 – объем рабочего раствора трилона Б, израсходованного на титрование пробы воды, мл;

N – молярная концентрация эквивалента рабочего раствора трилона Б, моль экв./л;

V2 – объем исследуемой воды, мл;

1000 – коэффициент пересчета от моль к ммоль.

По разности значений общей и карбонатной жёсткости определить постоянную жесткость. Сделать вывод о характере и степени жесткости исследуемой воды.

14.3 Примеры решения задач

Пример 1

Рассчитайте общую жесткость воды (ммоль экв./л), если в 0,15 л воды содержится 16,2 мг гидрокарбоната кальция, 2,92 мг гидрокарбоната магния, 11,10 мг хлорида кальция и 9,50 мг хлорида магния.

Решение

Выразим общую жесткость воды как сумму миллимолярных концентраций эквивалентов двухзарядных катионов металлов (или соответствующих им солей) в воде:

,

где m1, m2, mi – массы двухзарядных катионов металлов, либо массы соответствующих им солей, либо массы веществ, пошедших на устранение жесткости воды, мг;

M1, M2, Mi – молярные массы эквивалентов двухзарядных катионов металлов, либо массы соответствующих им солей, либо массы веществ, пошедших на устранение жесткости воды, г/моль;

V – объем воды, л.

Молярные массы эквивалентов солей, перечисленных в условии задачи, рассчитываются по формуле:

,

где z – эквивалентное число, для солей жесткости оно равно 2;

–молярная масса соли Х.

Формула соли

Са(HCО3)2

Mg(HCО3)2

СаCl2

MgCl2

, г/моль

81

73

55.5

48

Общая жесткость данного образца воды равна сумме временной и постоянной жесткости:

=

=2,56 ммоль экв./л

Пример 2

Определите временную жесткость воды, если на титрование 0,1 л воды, содержащей гидрокарбонат магния, израсходовано 7,2∙10-3 л 0,14н. раствора HCl.

Решение

При титровании воды соляной кислотой происходит реакция:

Mg(HCO3)2 + 2НС1 = MgCl2 + 2Н2О + 2СО2

Временную жесткость воды рассчитаем по формуле (8.1):

=10,08 ммоль экв./л

Пример 3

Для устранения общей жесткости по известково-содовому методу добавлено 7,4 г Са(ОН)2 и 5,3 г Na2CO3. Рассчитать временную и постоянную жесткость воды.

Решение

Добавление к воде Са(ОН)2 может устранить временную жесткость, а добавление Na2CO3 – постоянную жесткость. При добавлении этих реагентов к воде происходят следующие реакции:

Ca(HCO3)2 + Ca(OH)2 2CaCO3 + 2H2O

Mg(HCO3)2 + 2Ca(OH)2 Mg(OH)2 + 2CaCO3+ 2H2O.

Ca(NО3)2 + Na2CO3 = MeCO3 + 2NaNO3

Mg(NО3)2 + Na2CO3 = MeCO3 + 2NaNO3

Временную жесткость воды Жвр измеряют количеством вещества эквивалентов гидроксида кальция, участвующего в реакции, а постоянную жесткость Жпост – количеством вещества эквивалентов карбоната натрия.

M(1/2Са(ОН)2) = 74/2=37 г/моль;

M(1/2Na2CO3) = 106/2=53 г/моль;

7400/(37∙50) = 4 ммоль экв./л;

5300/(53∙50) = 2 ммоль экв./л

Общая жесткость воды равна:

Жобщ = Жвр + Жпост = 4 + 2 = 6 ммоль экв./л

14.4 Требования к уровню подготовки студентов

  • Знать понятия: общая, временная (карбонатная) и постоянная (некарбонатная) жесткость воды.

  • Понимать для чего необходимо умягчение воды.

  • Иметь представление об аналитических методах определения различных видов жесткости.

  • Уметь производить расчеты жесткости воды, а также расчеты количеств реактивов, необходимых для ее устранения.

14.5 Задания для самоконтроля

  1. При определении карбонатной жесткости воды используют индикатор метиловый оранжевый. Почему нельзя использовать фенолфталеин?

  2. Почему при кипячении воды ее временная (устранимая) жесткость уменьшается?

  3. Почему комплексонометрическим методом определяют только общую жесткость?

  4. Какие соли вызывают постоянную жесткость? Почему она так называется?

  5. Что происходит при кипячении жесткой воды с гидроксидом натрия? Почему израсходованное количество NaOH эквивалентно суммарному количеству растворенных солей некарбонатного происхождения?

  6. Что такое обратное титрование и как его осуществляют? Какие преимущества имеет этот метод?

  7. Какой вид жесткости воды определяют при помощи титрования раствором кислоты? Какая реакция при этом происходит?

  8. Какая характеристика раствора изменяется при кислотно-основном титровании? Какими методами можно фиксировать точку эквивалентности?

  9. Благодаря каким свойствам трилон Б (комплексон III) можно использовать в качестве титранта при определении общей жесткости воды?

  10. Для чего используется аммиачный буферный раствор при определении общей жесткости?

  11. Почему при определении общей жесткости воды прибавление кристаллов эриохрома черного вызывает покраснение раствора, а в точке эквивалентности раствор синеет?

  12. На титрование 100 мл воды пошло 2 мл 0,1н. раствора трилона Б. Рассчитайте жесткость воды.

  13. Вода содержит в 10 л 0,95 г хлорида магния и 1,62 г гидрокарбоната кальция. Определить карбонатную, некарбонатную (постоянную) и общую жесткость этого образца воды.

  14. Чему равна жесткость воды, выраженная в ммоль экв./л, если концентрация СаCl2 составляет 0,005 моль/л?

  15. Растворимость СаSO4 в воде 0,202%. Вычислите жесткость насыщенного раствора этой соли, принимая его плотность за 1,0 г/мл.

  16. Для умягчения 100 л воды потребовалось 12,72 г Na2CO3. Чему равна жесткость образца воды в ммоль экв./л?

  17. На титрование 0,05 л образца воды израсходовано 4,8∙10-3 л 0,1н. раствора HCl. Чему равна карбонатная жесткость воды?

  18. Какую массу гашеной извести надо прибавить к 2,5 л воды, чтобы устранить ее временную жесткость, равную 4,43 ммоль экв./л?

  19. При определении временной жесткости на титрование 0,1 л воды израсходовано 5,25∙10-3 л 0,101н. раствора HCl. Какова величина жесткость этой воды?

  20. Образец воды объемом 1 литр содержит 48,6 мг гидрокарбоната кальция и 29,6 мг сульфата магния. Какое количество Са2+ и Mg2+ содержится в литре этой воды? Чему равна общая, постоянная и карбонатная жесткость воды?

  21. Некарбонатная жесткость воды равна 3,18 ммоль экв./л. Какую массу Na3РO4 надо взять, чтобы умягчить 1м3 воды?

14.6 Список рекомендуемой литературы

14.6.1 Глинка Н.Л. Общая химия: Учебное пособие для вузов/ Под ред. А.И.Ермакова. – М.: Интеграл-Пресс, 2010. – 728 с.

14.6.2 Васильев В.П. Аналитическая химия. В 2 кн. Кн. 1: Титриметрические и гравиметрический методы анализа: учеб. для студ. вузов, обучающихся по химико-технол. спец. – М.: Дрофа, 2009. – 368 с.

14.6.3 Романцева Л.М. Сборник задач и упражнений по общей химии/ Л.М.Романцева, З.Л.Лещинская, В.А.Суханова. – М.: Высш. шк., 1991. – С.146 – 149.