Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭТ.docx
Скачиваний:
479
Добавлен:
20.05.2015
Размер:
5.58 Mб
Скачать

21. Расчет параллельных цепей переменного тока методом векторных диаграмм.

Для мгновенных величин в соответствии с первым законом Кирхгофа уравнение токов

Представляя ток в каждой ветви суммой активной и реактивной составляющих, получим

Для действующих токов нужно написать векторное уравнение

Численные значения векторов токов определяются произведением напряжения и проводимости соответствующей ветви.

На рис. 14.14, б построена векторная диаграмма, соответствующая этому уравнению. За исходный вектор принят, как обычно при расчете цепей с параллельным соединением ветвей, вектор напряжения U, а затем нанесены векторы тока в каждой ветви, причем направления их относительно вектора напряжения выбраны в соответствии с характером проводимости ветвей. Начальной точкой при построении диаграммы токов выбрана точка, совпадающая с началом вектора напряжения. Из этой точки проведен вектор l1a активного тока ветви I (по фазе совпадает c напряжением), а из конца его проведен вектор I1pреактивного тока той же ветви (опережает напряжение на 90°). Эти два вектора являются составляющими вектора I1 тока первой ветви. Далее в том же порядке отложены векторы токов других ветвей. Следует обратить внимание на то, что проводимость ветви 3-3 активная, поэтому реактивная составляющая тока в этой ветви равна нулю. В ветвях 4-4 и 5-5 проводимости реактивные, поэтому в составе этих токов нет активных составляющих.

Расчетные формулы для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Из векторной диаграммы видно, что все активные составляющие векторов тока направлены одинаково — параллельно вектору напряжения, поэтому векторное сложение их можно заменить арифметическими найти активную составляющую общего тока: Iа = I1a + I2a + I3a.

22. Основные типы цифровых интегральных схем. Параметры цифровых ис.

Интегральные микросхемы, в зависимости от технологии изготовления, могут быть полупроводниковымипленочными или гибридными.

Полупроводниковая микросхема – микросхема, все элементы и межэлементные соединения которой выполнены в объеме и на поверхности полупроводника.

Пленочная микросхема – микросхема, все элементы и межэлементные соединения которой выполнены только в виде пленок проводящих и диэлектрических материалов. Вариантами пленочных являются тонкопленочные и толстопленочные микросхемы.

Различие между тонкопленочными и толстопленочными микросхемами может быть количественным и качественным. К тонкопленочным условно относят микросхемы с толщиной пленок менее 1 мкм, а к толстопленочным – микросхемы с толщиной пленок свыше 1 мкм.

Гибридная микросхема – микросхема, содержащая, кроме элементов, простые и сложные компоненты (например, кристаллы микросхемы полупроводниковых микросхем). Одним из видов гибридной микросхемы является многокристальная микросхема.

В зависимости от функционального назначения интегральные микросхемы делятся на аналоговые и цифровые. Аналоговые микросхемы предназначены для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции. Частным случаем этих микросхем является микросхема с линейной характеристикой – линейная микросхема. С помощью цифровых микросхем преобразуются, обрабатываются сигналы, изменяющиеся по закону дискретной функции. Частным случаем цифровых микросхем являются логические микросхемы, выполняющие операции с двоичным кодом, которые описываются законами логической алгебры.

Минимальный состав комплекта интегральных микросхем, необходимый для решения определенного круга аппаратурных задач, называется базовым.

После появления микропроцессоров были введены дополнительные термины. Микропроцессор определен как программно-управляемое устройство, осуществляющее процесс обработки цифровой информации и управления им. Это устройство изготовлено на основе одной или нескольких больших интегральных схем (БИС).

Микропроцессорной названа микросхема, выполняющая функцию МП или его часть. Совокупность этих и других микросхем, совместимых по архитектуре, конструктивному исполнению и электрическим параметрам, называется микропроцессорным комплектом.

В последние годы в классификацию ИС вводятся новые понятия: микросхемы общего назначениязаказные и полузаказные.

Заказная микросхема – микросхема, разработанная на основе стандартных и (или) специально созданных элементов узлов по функциональной схеме заказчика, предназначена для определенной радиоэлектронной аппаратуры (РЭА).

Полузаказная интегральная микросхема – микросхема, разработанная на основе базовых кристаллов (в том числе матричных).

Система условных обозначений микросхем. Аналоговые и цифровые интегральные микросхемы разрабатываются и выпускаются предприятиями-изготовителями в виде серий. Каждая серия отличается степенью комплектности и содержит несколько микросхем, которые, в свою очередь, подразделяются на типономиналы. К серии микросхем относят совокупность типов микросхем, которые могут выполнять различные функции, но имеют единое конструктивно-технологическое исполнение и предназначены для совместного применения. Как правило, с течением времени состав перспективных серий расширяется.

Тип интегральной микросхемы – интегральная микросхема конкретного функционального назначения и определенного конструктивно-технологического и схемотехнического решения, имеющая свое условное обозначение. Под типономиналом интегральной микросхемы понимается микросхема конкретного типа, отличающаяся от других микросхем того же типа одним или несколькими параметрами.

Группа типов микросхем – совокупность типов микросхем в пределах одной серии, имеющих аналогичное функциональное назначение и принцип действия, свойства которых описываются одинаковым или же близким составом электрических параметров.

Основными параметрами цифровых интегральных схем являются их быстродействие, потребляемая мощность, коэффициент объединения по входу, коэффициент разветвления по выходу, устойчивость против внешних воздействий, степень интеграции, надежность.

Быстродействие ИС. Быстродействие ИС, как правило, определяется средней задержкой сигнала tcp, равной среднему арифметическому задержек включения и выключения одного инвертора. При определении средней задержки в качестве границ временных интервалов обычно берут точки на фронтах, соответствующие половине перепада напряжения, или точки, соответствующие уровням 0,1 и 0,9 этого перепада. По средней задержке логические ИС делятся на сверхбыстродействующие (tcp <5 нс), быстродействующие (tcp =5-10 нс), среднего быстродействия (tcp = 10-100 нс), низкого быстродействия (tcp >100 нс). Схемы ТТЛ-типа относятся к схемам среднего быстродействия. Для них типична средняя задержка 5-50 нс. Наибольшее быстродействие имеют транзисторные логические схемы с эмиттерными связями. Для них средняя задержка составляет 1-10 нс.

Потребляемая мощность. Потребляемая мощность логических ИС обычно зависит от того, какие сигналы поданы на входы этой ИС. Поэтому потребляемую мощность принято оценивать средней мощностью ( Р ср ), потребляемой типовым логическим элементом во включенном и выключенном состояниях. Как правило, чем выше быстродействие схем, тем больше средняя потребляемая ими мощность. Для схем ЭСЛ Рср составляет 20 - 80 мВт, для схем ТТЛ это 2-40 мВт, для КМОП 1-100 мкВт. В процессе переключения логических ИС средняя потребляемая мощность выше средней статической мощности вследствие всплесков тока в переходных режимах. Особенно это заметно в ИС с малым потреблением. Поэтому для них обычно указывается потребляемая мощность в динамическом режиме при определенной тактовой частоте. Поскольку снижение средней задержки логических схем сопровождается ростом потребляемой ими мощности, то находит применение параметр, называемый работой переключения (или добротностью), равный произведению средней мощности, потребляемой ИС, и средней задержки. Для первых поколений ИС этот показатель лежал в диапазоне 50-100 пДж. Последующие разработки позволили снизить его до 0,5-5 пДж.

Помехоустойчивость.Помехоустойчивость логических ИС принято характеризовать параметром, называемым статической помехоустойчивостью. Статическая помехоустойчивость - это наименьшее постоянное напряжение, которое, будучи добавлено (при самом неблагоприятном сочетании обстоятельств) к полезному входному сигналу, вызовет ошибку по всей последующей цепи логических схем. Статическая помеха наблюдается в тех случаях, когда относительно велико сопротивление проводников, подводящих к ИС напряжение питания. Падения напряжения на "земляной" шине, разные для разных ИС, будут суммироваться со входными сигналами и могут приводить к сбоям. Для исключения подобных ситуаций необходимо внимательно относиться к расположению проводников, подводящих напряжения питания, и увеличивать по возможности их сечение. Что касается импульсной помехоустойчивости, то для того, чтобы возник сбой, импульсная помеха, как правило, должна быть больше, чем статическая. Поэтому при одинаковой статической помехоустойчивости схемы с меньшей средней задержкой сильнее подвержены действию импульсных помех. Наименьшую помехоустойчивость имеют схемы ЭСЛ, для них статическая помехоустойчивость U ст составляет 0,1-0,3 В. В схемах ТТЛ помехоустойчивость выше благодаря наличию смещающих р-n-переходов на входах инверторов. Допустимая статическая помеха для этих схем равна 0,4-1,1 В. Для логических схем на КМОП-транзисторах величина Uст может достигать 2-3 В, что объясняется большими логическими перепадами напряжения в этих схемах.

Коэффициент объединения по входу . Коэффициент объединения по входу - это максимальное число входов, которое может иметь логический элемент. Чаще всего коэффициент объединения по входу не превышает восьми, что отчасти определяется ограниченным числом выводов ИС. Однако следует помнить, что всегда возможна реализация многовходовых логических схем путем построения соответствующей логической цепи, состоящей из простых схем.

Коэффициент разветвления по выходу.Коэффициент разветвления по выходу, или нагрузочная способность, определяется числом схем этой же серии, входы которых могут быть присоединены к выходу данной схемы без нарушения ее работоспособности. Нагрузочная способность ИС в значительной степени определяется типом примененного в них инвертора. Для простейшего инвертора, состоящего из одного транзистора, коэффициент разветвления по выходу равен чаще всего 2-4. Для сложных инверторов нагрузочная способность достигает 10-20 и более. В схемах на основе КМОП-транзисторов входы последующих схем в статическом режиме практически не нагружают выходов предыдущих. Это дает возможность иметь очень большой коэффициент разветвления по выходу. Однако надо иметь в виду, что в динамическом режиме емкости присоединенных входов затягивают переходный процесс и увеличивают ток, потребляемый от данной схемы.

Устойчивость против внешних воздействий. Устойчивость против внешних воздействий характеризует возможность применения ИС при изменении температуры, влажности, радиации и т. д. В значительной степени этот параметр логических ИС определяется типом используемого корпуса. Что касается электрических цепей ИС, то наименее устойчивы к воздействию температуры интегральные схемы ЭСЛ. Более устойчивы схемы КМОП, ТТЛ. Наиболее широкий температурный диапазон для выпускаемых серийно отечественных ИС - от -60 до +l25°C. Для схем общепромышленного применения этот диапазон обычно определяется границами -10 и + 70 °С.

Степень интеграции элементов. Степень интеграции элементов ИС характеризует достигнутый при производстве этих ИС технологический уровень. Численное значение степени интеграции определяется округленным до большего целого числа значением десятичного логарифма числа элементов в одном кристалле. Однако для потребителей ИС более важна степень интеграции не элементов, а логических функций, так как именно она показывает, какое число ИС (корпусов) потребуется для построения того или иного логического устройства. С этой точки зрения обычно делят все логические схемы на

  • ИС малой степени интеграции (в одном корпусе несколько инверторов или одни-два триггера), 100 элементов в кристалле

  • ИС средней степени интеграцидо и (в одном корпусе сложная логическая цепь, например сумматор или десятичный разряд счетчика), до 1000 элементов

  • ИС большой степени интеграции (в одном корпусе арифметическое устройство, многоразрядный счетчик и т. п.) до 10000 элементов

  • ИС сверхбольшой степени интеграции. Иногда в внутри группы СБИС выделяют такие группы

    • ультрабольшая интегральная схема до 1 миллиарда элементов

    • гигабольшая интегральная схема более 1 миллиарда элементов

В мае 2011 фирмой Altera была выпущена, по 28 нм техпроцессу, самая большая в мире микросхема, состоящая из 3,9 млрд транзисторов

Надежность ИС.Надежность ИС малой степени интеграции определяется в значительной мере отказами соединений между контактными площадками на кристалле и выводами корпуса. Для схем большой степени интеграции определяющими могут оказаться отказы элементов и соединений внутри самого кристалла. Интенсивность отказов ИС при хорошо отработанном технологическом процессе их изготовления может не превышать 10-7 ч-1, что примерно соответствует интенсивности отказов хороших дискретных транзисторов.