Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка_Функц.анализ.DOC
Скачиваний:
133
Добавлен:
16.02.2016
Размер:
3.25 Mб
Скачать

§ 2. Вычисление собственных векторов и собственных чисел в конечномерном пространстве

Пусть – базис-мерного пространстваи– некоторый линейных оператор. Допустим, что вектор

есть собственный вектор оператора , так что

, (6.1)

где – собственное значение, соответствующее собственному вектору. Повторив рассуждения, проведенные при получении равенств (3.1), можем записать последнее равенство в координатной форме

(6.2)

где – координаты векторав выбранном базисе, а– элементы матрицылинейного операторав базисе. Систему уравнений (6.2) можно записать в виде

(6.3)

Так как искомый собственный вектор ненулевой, то среди его координат должна быть хоть одна отличная от нуля, а это значит, что система (6.3) должна иметь ненулевое решение. Для того чтобы система линейных однородных уравнений (6.3) имела ненулевое решение, необходимо и достаточно, чтобы ее определитель был равен нулю

. (6.4)

Уравнение (6.4) называется характеристическим уравнением оператора . Итак, если вещественное числоесть какое-нибудь собственное значение оператора, то оно является корнем характеристического уравнения (6.4) и наоборот. Отсюда следует, что, найдя вещественное собственное числои подставив его в систему (6.3), мы сможем найти координаты соответствующего собственного вектора.

Если все корнейуравнения (6.4) вещественны и различны, то можно найтиразличных собственных векторов оператора, решая систему (6.3)раз последовательно при. Можно показать, что полученные собственные векторылинейно независимы. Примем их за новый базис. Тогда в этом базисе сами векторыимеют соответственно координаты

и систем уравнений, получающихся из (6.2) для каждого случая, примут вид

(6.5)

а тогда матрица оператора имеет вид

. (6.6)

Сформулируем полученный результат следующим образом:

в -мерном пространстве матрица всякого линейного оператора характеристическое уравнение которого имеетразличных вещественных корней, в базисе из его собственных векторов диагональна и ее диагональные элементы есть собственные значения оператора.

§ 3. Собственные векторы симметричных операторов

Определение. Оператор , действующий в евклидовом пространстве , называетсясимметричным, если для любых векторов ипространстваимеет место равенство

. (6.7)

Важно отметить, что в -мерном евклидовом пространстве матрицасимметричного оператора в любом ортогональном нормированном базисе совпадает со своей транспонированной матрицей, то естьесть симметричная матрица. Верно и обратное утверждение: каждый оператор, имеющий в некотором ортогональном и нормированном базисе симметричную матрицу, является симметричным оператором.

Теорема. Собственные векторы симметричного оператора , отвечающие различным собственным значениям, взаимно ортогональны.

Доказательство. Пусть имеют место равенства

, (6.8)

, (6.9)

где и– собственные значения оператора , причем. Умножим равенство (6.8) скалярно на, а (6.9) наи вычтем второе из первого. Тогда можем написать

. (6.10)

Так как оператор симметричный, то левая часть равенства (6.10) равна нулю, а это значит, что привыполняется равенство, что и требовалось доказать.

Примем без доказательства следующие теоремы.

Теорема. Симметричный оператор в-мерном евклидовом пространствеимеетвзаимно ортогональных собственных векторов.

Теорема. Если матрица симметрична, то соответствующее ей характеристическое уравнение (6.4) не имеет комплексных корней. Каждому вещественному корнюуравнения (6.4) отвечает ровно столько линейно независимых решений системы (6.3), какова кратность корня.