Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ_ВСЕ.docx
Скачиваний:
118
Добавлен:
18.02.2016
Размер:
1.02 Mб
Скачать

3)Интегрирование рациональных функций методом неопределённых коэффициентов. Метод Остроградского.

Для нахождения неизвестных коэффициентов в разложении

используется метод неопределенных коэффициентов, суть которого состоит в следующем:

1.правую часть записанного равенства приводим к общему знаменателю, который совпадает со знаменателем дроби, стоящей в левой части этого равенства - , в числителе левой части получим некоторый многочлен с неизвестными коэффициентами;

2.используем тот факт, что две дроби равны, когда равны их числители и знаменатели. Из того, что знаменатели левой и правой частей равенства равны, то значит, равны и числители:

3.два многочлена равны, если равны коэффициенты при соответствующих степенях переменной, поэтому приравниваем коэффициенты при одинаковых степенях переменной . В результате получаем систему для определения неизвестных коэффициентов.

Метод неопределенных коэффициентов позволяет проинтегрировать любую рациональную дробь. При этом могут получиться лишь многочлены, рациональные дроби, логарифмы и арктангенсы.

Второй способ нахождения коэффициентов

Второй способ нахождения искомых коэффициентов состоит в том, что в получаемом относительно тождестве аргументу придают значения корней, в результате чего получаются уравнения для нахождения неизвестных коэффициентов. Данный метод более удобен, если корни знаменателя некратные. На практике чаще всего используется комбинация обоих способов.

БИЛЕТ4

4.Интегрирование тригонометрических функций

IРассмотрим интегралы вида

, где — рациональная функция.

Такие интегралы всегда рационализируются подстановкой . В самом деле,

Выразим далее переменную через переменную. Так как

, то , а поэтому.

Значит

Таким образом, задача свелась к вычислению интеграла от рациональной функции. Поскольку подстановка — позволяет рационализировать любой интеграл вида, то её называютуниверсальной подстановкой. Любой интеграл этого вида выражается через элементарные функции.

БИЛЕТ5

5. Интегрирование иррациональных функций

Пусть — рациональная функция оти, т. е. функция, получаемая изи чисел с помощью конечного числа арифметических операций (сложения, умножения и деления). Примерами таких функций могут служить

Если заменить в переменнуювыражением, то получим функциюот одной переменной. Интеграл от нее имеет вид:

Этот интеграл рационализируется с помощью подстановки

В самом деле, так как подкоренное выражение представляет собой дробно-линейную относительно функцию, то переменнаярационально выражается через переменную

Тогда — рациональная функция. Заменяя теперь переменную в данном интеграле, получим интеграл от рациональной функции новой переменной

Замечание. Если под знаком интеграла содержатся корни с разными показателями, но с одним и тем же дробно-линейным относительно х подкоренным выражением, то сначала следует привести их к одному показателю, после чего использовать указанный прием.

БИЛЕТ6

6. Интегрирование диф. бинома (теорема Чебышёва)

Дифференциальным биномом называют выражение вида

где a и b — любые константы, а показатели степеней m, n и p — рациональные числа. Изучим вопрос об интегрируемости в элементарных функциях дифференциальных биномов. Рассмотрим три случая , когда интеграл от дифференциального бинома допускает рационализирующую подстановку. 1. Первый случай соответствует целому p. Дифференциальный бином представляет собой дробно-линейную иррациональность вида , где r — наименьшее общее кратное знаменателей рациональных чисел m и n. Стало быть,интеграл от дифференциального бинома в этом случае рационализируется подстановкой . 2.Второму случаю соответствуетцелое число . Сделаем подстановкуи положим для краткости, получим

Подынтегральная функция в правой части является дробно-линейной иррациональностью следующего вида вида , где s — знаменатель рационального числа p. Таким образом, для второго случая дифференциальный бином рационализируется подстановкой

3. Третьему случаю соответствует целому число . Подынтегральная функция в правой части является дробно-линиейной иррациональностью вида, так что интеграл от дифференциального бинома рационализируется подстановкой вида

БИЛЕТ7

7.Специальные функции- функции которые выражаются через элементарные функции , представляются в виде рядов или интегралов. Интеграл неберущийся –если подынтегральная функция не является элементарной. Эти интегралы не выражают через элементарные функции , поэтому для них вычисляют вероятности для нормальной распределенной случайной величины этой функции. 3 метода вычислений :1приближенный метод Симсона 2.разложение подынтегральной функции в ряд Маклорена 3.с помощью таблицы значений функций Лапласа

Примеры:  1.      2.      3.      4. 

БИЛЕТ8

8. Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х0=а, x1, х2, ..., хn = В (х0 <x1 < ...< хn) разобьем отрезок [а, b] на n частичных отрезков [х01], [x1; х2],..., [хn-1n] (см. рис. 167).

2. В каждом частичном отрезке [xi-1;xi], i = 1,2,...,n выберем произвольную точку сi є [xi-1; xi] и вычислим значение функции в ней, т. е. величину ƒ(сi).

3. Умножим найденное значение функции ƒ (сi) на длину ∆xi=xi-xi-1 соответствующего частичного отрезка: ƒ (сi) • ∆хi.

4. Составим сумму Sn всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим черезλ длину наибольшего частичного отрезка: λ = max ∆xi(i = 1,2,..., n).

БИЛЕТ9

9. Физический смысл:  1) если задана скорость как функция от времени, то путь за время Т равен интегралу от скорости по времени;  2) если задано ускорение как функция от времени, то изменение скорости равно интегралу от ускорения по времени; Геометрический смысл: если функция y(x) больше нуля на промежутке [a;b], то площадь криволинейной трапеции, ограниченной графиком функции, осью ОХ и двумя прямыми х=а и х=b, равна интегралу от этой функции по переменной х на данном промежутке.

БИЛЕТ10

10. Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления.

Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b]F - первообразная для f(x). Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f(x) , вычислить ее значения в точках a и b и найти разность F(b) – F(a).

Основные свойства определенного интеграла

I. Величина определенного интеграла не зависит от обозначения переменной интегрирования, т.е. , где х, t – любые буквы.

II. Определенный интеграл с одинаковыми пределами интегрирования равен нулю.

III. При перестановке пределов интегрирования определенный интеграл меняет свой знак на обратный.

IV. Если промежуток интегрирования [a,b] разбит на конечное число частичных промежутков, то определенный интеграл, взятый по промежутке [a,b], равен сумме определенных интегралов, взятых по всем его частичным промежуткам.

V. Постоянный множитель можно выносить за знак определенного интеграла.

VI. Определенной интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме определенных интегралов от этих функций.

БИЛЕТ11

Замена переменной в определенном интеграле

Теорема. Пусть дан интеграл , где  непрерывна на . Введем новую переменную , связанную с  равенством . Если

1) 

2)  и  непрерывны на ,

3) при изменении z от α до β значения  не выходят за пределы отрезка  то

(5)

Доказательство. Пусть –первообразная для функции, то есть . Тогда по формуле Ньютона–Лейбница

(I)

Покажем, что функция  является первообразной для функции =[по правилу дифференцирования сложной функции] = Тогда по формуле Ньютона–Лейбница

(II)

Сравнивая равенства (I) и (II), убеждаемся в справедливости формулы (5).

Пример.

при x=0  при x=ln

=

 

Интегрирование по частям в определенном интеграле

Формула интегрирования по частям в определенном интеграле выводится так же, как и для неопределенного интеграла, и имеет вид 

Пример.

БИЛЕТ12

12. Определённый интеграл называется несобственным, если выполняется, по крайней мере, одно из следующих условий.

  • Область интегрирования является бесконечной. Например, является бесконечным интервалом .

  • Функция f(x) неограничена в области интегрирования.

Если интервал [a,b] конечный, и функция интегрируема по Риману, то значение несобственного интеграла совпадает с значением определённого интеграла.

Несобственные интегралы I рода

Пусть определена и непрерывна на множестве от и . Тогда:

  1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана первого рода. В этом случае называется сходящимся.

  2. Если не существует конечного ( или ), то интеграл называется расходящимся к , или просто расходящимся.

Пусть определена и непрерывна на множестве от и . Тогда:

  1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана первого рода. В этом случае называется сходящимся.

  2. Если не существует конечного ( или ), то интеграл называется расходящимся к , или просто расходящимся.

Если функция определена и непрерывна на всей числовой прямой, то может существовать несобственный интеграл данной функции с двумя бесконечными пределами интегрирования, определяющийся формулой:

, где с — произвольное число.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]