Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

UMK11

.pdf
Скачиваний:
44
Добавлен:
27.03.2016
Размер:
3.4 Mб
Скачать

 

 

 

 

π

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 p

 

pe

2 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

+ e

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 +1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПРИМЕР

 

 

2.4.

 

 

Доказать,

 

 

 

что

 

если

 

F0 (p)f0 (t),

где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

при

 

 

t < 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f0 (t) = f (t)

при 0 t < l ,

 

 

 

 

 

а функция

f (t) при t > l периодическая с

 

при

 

 

t ≥ l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

периодом l: f (t + l) = f (t), то

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F0 (p)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

 

 

 

 

 

 

= F(p).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.3)

 

 

1 e−l p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Доказательство.

 

f0 (t) = [η(t) − η(t − l)]f (t) = η(t)f (t)

 

 

 

 

 

 

e−lp F(p). С другой стороны f

 

 

 

 

(p). В силу этого

− η(t − l)f (t − l)F(p)

0

(t)F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

F (p) = F(p)(1 e−l p ), F(p) =

 

F0 (p)

 

. Что и следовало доказать.

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

1

e−l p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПРИМЕР 2.5. Найти изображение функции:

 

 

 

 

 

 

 

 

 

 

 

 

а) f (t) = t (t 3)η(t 1); b) f (t) = sin t{η(t 2π) − η(t 3π)};

 

с) f (t) = 1 t (t 2 5t + 4)η(t 1) + (t 2 3t) η(t 3);

 

 

 

 

 

 

d) f (t) = 2 1 − η t

1

 

 

− η t

3

 

+

η t

1

 

− η t

3

sin 2πt .

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

Решение.

 

а) Согласно ТИ ((1.13)) имеем: t ≡ η(t) t

. В силу (1.8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

p

 

2 e

p

 

 

 

 

 

 

 

 

 

 

 

(t 3)η(t 1) = (t 1)η(t 1)

2η(t 1)

 

 

 

 

,

 

 

 

 

 

 

 

 

 

p2

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 ep )+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t (t 3)η(t 1)

ep .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

1

 

(1 ep )+

2

ep .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)sin t{η(t 2π) − η(t 3π)} = sin(t 2π)η(t 2π) sin(t 3π)×

 

e

2πp

 

e

3πp

 

 

1

e2πp (1 e−πp ).

× η(t 3π)

 

 

=

 

 

 

 

 

 

+ p2

 

1 + p2

1 + p2

1

 

Ответ:

e

2πp

(1 e

−πp ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

t 2 8t + 4 =

 

t 1 = u

 

= 1 + 2u + u 2

5 5u + u =

 

 

 

 

 

с) 1 t

;

 

 

 

 

 

 

p p2

 

 

 

t = 1 + u

 

 

 

 

 

 

 

 

= u 2 3u = (t 1)2 3(t 1),

 

 

 

 

 

e

p

 

3 e

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t 2 5t + 4)η(t 1) = [(t

1)2 η(t 1) 3(t 1)η(t 1)]

 

 

;

p3

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t 2 3t = t 3 = u = (u + 3)2 3(u + 3) = u 2 + 6u + 9 3u 9 = u 2 + 3u ; t = u + 3

 

e

3p

 

e

3p

 

(t 2 3t)η(t 3) = (t 3)2 η(t 3) + 3(t 3)η(t 3)

 

+ 3

 

.

p2

p2

 

 

 

Окончательно имеем

 

 

 

 

 

 

1

 

 

 

e

p

 

3 e

p

 

 

 

f (t)

1

 

 

 

+

 

+

 

 

 

 

 

p3

p2

 

 

p

 

 

 

p2

 

 

+

2

(e3p ep ).

 

 

 

 

 

 

 

 

 

p3

 

 

 

(3e3p

1)+

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

 

1

+

1

 

 

 

 

p2

 

 

 

 

 

p

 

 

 

 

 

 

e3p

+

3 e3

=

1

+

1

(3e3p 1)+

p3

p2

 

 

 

 

p p2

 

2

(e3p ep ).

p3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

e 2

 

 

 

3

 

 

e 2

 

 

 

 

 

 

 

 

 

 

 

d) 1) 1 ≡ η(t)

 

 

;

 

 

η t

 

 

 

 

 

 

 

;

 

η t

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

3

 

 

 

1

 

 

 

 

p

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − η t

 

 

 

 

t

 

 

 

 

 

 

1

e 2 e

 

2

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) η t

1

sin 2πt =

 

t

1

= u

 

= η(u)sin 2π u +

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

t = u +

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

2π e

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

= η(u)sin(2πu + π) = −η(u)sin 2πn = −η t

 

sin 2π t

 

 

 

 

 

 

 

 

;

 

2

 

 

 

 

4π2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

p2 +

 

 

 

3

 

 

 

 

 

 

t

3

 

= u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)

η t

 

sin 2πt =

 

 

 

 

 

2

 

 

3

 

= η(u)sin 2π u +

 

 

 

 

= η(u)sin(2πu + 3π) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

t = u +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

2π e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −η(u)sin 2πu = −η

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

sin 2π t

 

 

← −

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

p2

+ 4π2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Окончательный результат таков:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

(1 ep )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2πe

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

1 e

2

 

e

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

2

+ 4π

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

(1 ep ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πe

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

 

 

1 e

2

 

e

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

+ 4π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПРИМЕР 2.6. Найти оригинал по заданному его изображению

 

 

 

 

 

 

 

 

 

 

 

1

(2 3ep + e3p ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Раскрывая скобки, получаем

 

1

(2 3ep + e3p ) =

2

3ep

 

+

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

e

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

e

p

 

 

 

+

 

 

 

.

Согласно

 

(1.7)

 

 

имеем

 

 

1)

2η(t);

 

2)

 

 

 

 

 

→η(t

1);

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

e

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)

 

 

 

 

→η(t 3). Теперь,

 

 

пользуясь

 

 

свойством линейности изображения

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Лапласа, окончательно получаем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2

3ep + e3p )2η(t) 3η(t 1) + η(t 3).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: 2η(t) 3η(t 1) + η(t 3).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проверка. Надо воспользоваться соотношениями 1) – 3)

и линейностью

L изображения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПРИМЕР

 

 

 

2.7.

 

 

 

 

Найти

 

 

 

 

оригинал

 

 

 

 

 

по

заданному

 

изображению

 

2 + pT (2 + pT)epT

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 epT )p3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Согласно примеру 2.4 и ТИ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

T

 

2

 

 

 

 

T

 

 

 

 

pT

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F0 (p) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

η(t)(t

 

+ T t)− η(t + T t) =

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

+

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

3

p

2

 

3

 

p

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= [η(t) − η(t T)](t 2 + T t) = f0 (t). Отсюда следует

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f0

(t) = t 2 + T t

 

 

 

 

при

 

0 t < T .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

при

 

 

 

 

 

 

 

 

t T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: f (t) периодическая функция с периодом T , которая является

продолжением f0 (t), заданной на 0 ≤ t < T , на всю положительную ось t .

 

 

 

 

 

 

 

 

f0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2T 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

T

 

 

 

t

 

 

 

 

 

 

 

 

 

Рис. 2.2

 

 

 

 

Проверка. Согласно примеру 2.4 и ТИ

 

 

 

 

f0 (t) = [η(t) − η(t T)](t 2 + T t)=

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

2

 

T

 

2

T

= η(t)(t

+ Tt )− η(t T)(t

+ Tt )

 

 

+

2 e

Tp

 

3 +

 

 

 

 

p

3

 

 

=

= (2 + pT) (2 + pT)epT

 

 

 

p

 

p

 

p

= F (p). Отсюда

 

 

 

 

 

 

p3

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F (p)

 

(

+ pT

)

(

 

)

e

pT

 

 

 

 

 

 

0

 

2

 

2 + pT

 

 

 

 

 

 

F(p) = 1 eTp

=

 

(1 eTp )p3

 

 

 

. В чем и следовало убедиться.

 

 

 

2.2. ПРИМЕРЫ НАХОЖДЕНИЯ ОРИГИНАЛА

 

 

 

 

 

 

 

 

ПО ИЗОБРАЖЕНИЮ

 

ПРИМЕР 2.8. Найти оригинал для изображения F(p) = 1 .

(p − α)(p − β)

Решение: I способ (разложение на элементарные (простейшие) дроби).

Заданную правильную рациональную дробь разлагаем на элементарные

дроби:

 

 

 

 

1

 

 

1

 

1

 

 

 

=

 

 

 

 

(p − α)(p − β)

 

 

 

 

(α − β) p − α

 

1

 

 

1

 

(e

α t eβ t ),

 

 

 

 

 

 

 

 

 

 

 

(α − β)

 

 

 

p − β

 

 

где использовались соотношения из (1.5)

Ответ: (α 1− β) (eα t eβ t ).

II способ (выделение полного квадрата). Проиллюстрируем его на более общем примере без излишних детальных объяснений и ссылок. Пусть

 

 

 

 

 

 

 

 

F(p) =

 

 

 

 

Ap + B

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

A p + B

 

 

 

 

 

 

 

 

 

.

 

 

 

 

(2.4)

 

 

 

 

 

 

 

 

p2 + b p + c

 

 

 

+

 

b 2

+ c

 

b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если c

b2

 

= a 2 > 0,

 

a =

 

 

c

b2

 

 

, преобразуем (2.4) к виду

 

 

 

 

 

 

4

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ab

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ap + B

 

 

 

 

 

 

 

A p

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. И

согласно

(1.6), (1.8),

 

p 2 + bp + c

 

 

 

 

 

 

b

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

+

 

 

 

 

 

 

 

 

+ a 2

 

 

 

p +

 

 

 

 

 

 

 

+ a 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.9) в этом случае

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

Ab

 

 

b

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F(p)A e

2

 

 

cos at

+

 

 

 

 

B

 

 

 

 

 

 

e

2

 

 

sin at .

 

 

(2.5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если

 

c

 

b2

 

= −a 2 < 0, a =

 

 

 

b2

c

 

 

 

 

(корни квадратного трехчлена

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

вещественны), то с учетом (1.6), (1.8), (1.9) (см. также ТИ) имеем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ab

 

 

 

 

 

 

 

 

 

 

Ap + B

 

 

 

 

 

 

 

 

 

 

 

 

 

A p

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

+

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

p2 + bp + c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

+

 

 

 

 

 

 

 

 

 

 

 

a 2

 

 

 

 

p +

 

 

 

 

 

 

a 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

t

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

Ab

 

 

 

b

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ae

2

 

 

ch at +

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

e 2

sh at .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При с

b2

 

= 0 получаем (см. формулу (4) из ТИ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ab

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ap + B

 

 

 

 

 

 

A

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ab

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A e

 

2

 

 

 

 

+ B

 

 

 

 

 

 

 

t e

2 .

(2.7)

 

p2 + bp + c

 

 

 

 

b

 

 

 

 

 

 

 

 

 

b 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p +

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проверка. Нам надо убедиться в справедливости (2.5)-(2.7), прочитанных справа налево. Действительно, используя ТИ, находим

 

 

 

p

cos at

 

 

 

 

;

 

p 2

 

 

 

 

+ a 2

(1):

 

 

 

 

 

 

 

 

a

sin at

 

 

 

;

p 2

 

 

+ a 2

b

t

 

1

 

Ab

b

 

 

 

A e 2

cos at +

 

B

 

e

2

 

 

 

 

 

 

a

 

2

 

 

=

Ap + B

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

p2 + bp + c

 

 

 

 

 

 

 

 

p

 

ch at

 

 

 

;

 

p 2

 

 

 

 

 

a 2

 

(2):

 

 

 

 

 

 

 

 

 

a

 

sh at

 

 

;

 

p 2

 

 

 

 

a 2

 

b

t

 

 

1

Ab

b

t

 

 

 

 

A e 2 ch at

+

 

 

B

 

e

2

 

 

 

 

 

 

 

 

 

 

a

2

 

 

 

=

Ap + B

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 + bp + c

b

 

 

 

 

 

 

 

 

 

 

p +

b

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

2

 

 

cos at

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

+

 

 

 

 

 

 

+ a 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

t

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

2

 

sin at

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

b

 

+ a 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

Ab

 

 

t

 

 

 

 

 

 

A p +

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

sin at

 

 

 

 

 

 

 

+

 

 

 

 

 

=

 

b 2

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

+ a

2

 

 

 

 

 

 

 

 

p +

 

 

 

 

 

+ a 2

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

p +

b

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

2

 

ch at

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

b

 

a 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

t

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

2

 

 

sh at

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

+

 

 

 

 

 

 

 

a 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

b

 

 

 

 

 

 

 

 

Ab

 

 

 

 

 

 

 

 

 

A p

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

sh at

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

=

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

+

a

2

 

 

 

 

 

 

 

 

p +

 

 

 

 

 

 

a 2

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

b

 

t

 

 

 

A

 

 

 

 

 

 

Ab

b

t

 

 

 

Ab

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3): Ae

2

 

 

 

 

 

 

;

B

 

 

 

 

t e 2

B

 

 

 

 

t

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p +

b

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

b

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p +

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ab

 

 

 

 

 

 

b

 

 

 

 

Ab

b

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

t

A

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ae 2

+ B

 

 

t e

2

 

 

 

 

+

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

p +

 

 

b 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

p +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

Ap + B

 

 

=

 

 

 

Ap + B

 

 

. Что и надо доказать.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

p2 +bp + c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

ПРИМЕР 2.9. Найти оригинал для изображения F(p) = (p2 + β2 )2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

β

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

+ β

2 )2

 

 

 

 

 

 

 

 

 

 

+ β

 

 

 

 

 

p

 

 

 

+ β

 

 

 

 

β

 

p

 

+ β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

p

2

 

 

 

p

 

 

 

 

 

2

2

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin βt .

Используя теорему 1.6 о дифференцировании изображения

(см.

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.12)), получим:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

t sin βt

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

t sin βt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −

 

 

 

 

 

 

 

 

 

→ −

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

2

+ β

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2β

 

 

 

 

 

 

 

 

 

p

 

 

 

 

p

 

 

 

 

 

 

(p 2 + β2 )

 

 

 

 

 

 

 

 

 

 

 

 

(p 2 + β2 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

 

t sin βt

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проверка. sin βt

 

 

 

 

 

 

 

. С учетом (1.12) имеем t sin βt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 2 + β2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

 

2 βp

 

 

 

 

 

 

 

 

 

 

 

t sin βt

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

← −

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

+ β

2

 

 

 

 

 

 

 

 

 

2

 

 

2 β

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

p

 

 

 

(p 2 + β2 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(p 2 + β2 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II способ. Так как

 

 

 

 

 

 

 

 

 

 

cos βt;

 

 

 

 

 

 

 

 

 

 

 

 

sin βt,

то по теореме

 

 

 

 

 

 

p 2 + β2

 

p 2

 

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ β2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Бореля (см. (1.16), (1.17)):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t) =

 

t

cos βτ

1

sin β(t − τ)dτ =

 

1

 

t

[sin

βt + sin β(t 2τ)]dτ =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2β 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t sin βt

 

 

 

 

1

 

 

cosβ(t 2τ)

 

t

 

t sin βt

 

 

 

1

 

 

 

[cos(− βt) cos βt] =

t sin βt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

+

 

 

 

 

 

=

+

 

 

 

 

 

4

β2

 

4β2

 

 

2β

 

 

 

2β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

2β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Получен тот же результат.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПРИМЕР 2.10. Найти оригинал для изображения

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p4 + 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Сначала преобразуем p4 + 4 к виду:

p4 + 4 = p4 + 4p2 + 4

4p2 = (p2 + 2)2 4 p2

 

 

= (p2 2p + 2) (p2 + 2p + 2). Вследствие этого

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

(

 

 

 

 

 

 

 

 

 

)(

 

 

 

 

 

 

 

) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

p

4

 

 

 

2

 

 

 

 

 

 

 

 

2

+ 2p + 2

4 p

 

 

2

 

 

 

 

 

 

 

2

+ 2p +

 

 

 

 

 

 

 

 

 

 

+ 4 p

 

 

 

2p + 2 p

 

 

 

 

 

 

 

 

 

 

 

p

 

 

2p + 2 p

 

2

 

 

 

 

 

 

 

 

 

p

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

(e t sin t e −t

sin t) =

sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

sht .

 

 

 

 

 

 

 

 

 

 

 

(p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 + 4

 

 

 

 

4

 

1)2 + 1

 

 

(p + 1)2 + 1

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

sin t sh t

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

Проверка.

 

 

 

 

 

 

 

sh t sin t =

(e t

sin t e−t

sin t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

(p

1)2 + 1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

(p +1)2 +1 (p 1)2 1

 

 

 

 

 

 

 

4 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

(

 

 

 

 

 

 

 

 

)(

 

 

 

 

 

 

 

 

 

 

 

 

) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

,

 

(p +

1)

2

 

 

 

 

 

4

 

2

 

 

 

 

2

+ 2p +

2

[(

 

2

 

 

 

 

2

 

 

 

 

 

 

2

]

p

2

+ 4

 

 

 

 

 

+1

 

 

 

 

p

 

 

2p + 2 p

 

 

 

 

 

 

+ 2

)

4p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

что подтверждает ответ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПРИМЕР

2.11.

 

Найти

оригинал для

 

 

изображения

 

а) F(p) =

 

 

 

1

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p(p 1)

b) F(p)

 

=

 

 

 

 

 

1

 

 

 

 

 

с) F(p) =

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

d) F(p) =

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

p(p2 +1);

(p 1)(p2 +1);

 

 

 

 

p(p 1)(p2 +1);

е) F(p)

 

=

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(p2 +1)(p2 1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Разлагая на элементарные дроби и согласно ТИ, получаем:

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) F(p) = −

+

 

 

 

e t − η(t) = e t 1;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

p 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) F(p) =

 

 

 

 

 

 

 

 

=

 

 

 

 

→η(t) cos t;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p(p 2 + 1)

 

 

 

 

p 2 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с) F(p) = (

 

 

 

1

 

2

 

) =

1

 

(p +

 

 

 

 

 

1

 

 

 

2

1

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

)(

 

 

2

 

1)

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 1 p +1

 

 

 

 

 

 

 

 

 

 

 

 

p 1 p +

1

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

p + 1

 

 

 

1

 

 

1

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

1

 

 

 

1

 

(e

t

cos t sin t);

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

2

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

+ 1

 

2

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

p 1

 

p

 

 

 

 

 

p 1

 

 

 

 

+ 1 p

 

 

+ 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) F(p) =

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

2

+1)

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)(p

2

+1)

p(p

2

+1)

 

 

 

 

 

p(p 1)(p

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+1 p 1

 

p

 

 

 

 

 

 

 

 

Теперь остается воспользоваться результатами b) и с), что дает

 

1

 

 

 

.

1

(e t cos t sin t)− η(t) cos t .

 

 

 

 

(

)(

2

)

2

.

 

p p 1 p

+ 1

 

 

 

 

е) F(p)=

 

 

1

 

 

 

 

1

 

 

1

 

 

 

 

1

 

.

1

(sh t sin t).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(p

 

+ 1)

(p

 

1)

=

 

 

 

 

 

 

 

 

 

 

 

2

2

2

 

2

1

p

2

+ 1

2

 

 

 

 

p

 

 

 

.

 

Ответ: а) et 1; b) 1 cos t; с)

1

(e t cos t sin t);

2

 

 

 

 

 

 

 

d)

1

(e t cos t sin t)− η(t)cos t;

е)

1

(sh t sin t).

2

2

 

 

 

 

 

 

Проверка. Предлагаем сделать самостоятельно.

2.3. ОПЕРАТОРНЫЙ МЕТОД ИНТЕГРИРОВАНИЯ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (ЛДУ)

С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

Общий принцип интегрирования ЛДУ операторным методом: почленное применение преобразования Лапласа к заданному уравнению, покажем на конкретных примерах. При этом предполагается, что правые части уравнений являются оригиналами.

ПРИМЕР 2.12. Найти решение уравнения с заданными начальными условиями: x ′′+ 3x′ = e−3t ; x(0)= 0, x(0)= 1.

Решение. Согласно (1.10) и (1.11)

x(t)X(p); x(t)p X(p)x(0)= p X(p);

x ′′(t)p2 X(p)[p x(0)+ x(0)]= p2 X(p)1.

Имея это ввиду и применяя почленно к рассматриваемому ЛДУ преобразование Лапласа, будем иметь (см. ТИ) операторное уравнение

 

2

X(p)1 + 3p X(p)=

 

1

 

 

X(p)=

 

 

p + 4

 

=

4

1

 

 

1

 

 

1

 

 

p

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

p + 3

 

 

 

 

p(p + 3)

 

 

 

 

 

 

 

 

 

+

 

 

 

3(p + 3)

 

 

 

 

 

 

 

 

 

 

 

 

9 p p

3

 

 

 

 

 

Теперь согласно ТИ

 

1

→ η(t);

 

 

1

 

e−3t ;

 

 

 

 

 

1

 

 

t e−3t . В силу

 

 

 

 

 

 

 

 

 

 

(p + 3)2

 

 

 

 

 

 

 

 

p

 

 

p + 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

[η(t)e −3t ]

1

 

 

 

 

 

 

 

 

 

 

 

этого и свойству линейности

X(p)

t e −3t ;

η(t)= 1 при

 

 

t 0 .

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: x(t)=

4

[η(t)e−3t ]

1

t e−3t .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проверка. x(t)=

4

3e3t

1

(e3t 3 t e3t )= e3t + t e3t

 

9

 

 

 

 

3

 

 

x ′′(t)= −3e3t + e3t 3 t e3t = −2 e3t 3 t e3t

 

x ′′+ 3x′ = +e3t ,

x(0)= 0,

x(0)= 1.

Полученное

тождество

(относительно t ) указывает на верность полученного решения. В чем и следовало убедиться.

Замечание. Удобство операторного метода плюс ко всему состоит еще в том, что в полученном решении уже учтены начальные условия.

ПРИМЕР 2.13. Найти решение уравнения x IV x = sh t с заданными начальными условиями x(0)= x′ = x′′(0), x′′′(0)= 1.

Решение. Согласно теореме дифференцирования оригинала (1.10) и (1.11)

 

 

имеем x(t)X(p);

x(t)p X(p),

 

 

 

 

x ′′′(t)p3 X(p), x iv (t)p 4 X(p)1.

 

 

x ′′(t)p2 X(p),

 

 

Далее, поступая как и в примере 2.12 настоящего параграфа, найдем

операторное уравнение

 

, X(p)(p4 1)=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p4 X(p)1 X(p)=

1

 

 

1

 

+1 =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 1

 

 

 

 

 

 

 

 

p2 1

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

; X(p)=

(p2 1)(p4 1)=

(p2 1)2 (p2 +1).

 

 

 

 

 

 

 

p2 1

 

 

 

 

 

 

 

 

 

I способ. Получили рациональную дробь. Корни ее знаменателя являются

особыми

 

 

точками: p1 = i,

 

p2 = −i

 

простые

 

полюсы;

p3

= 1; p 4

= −1

полюсы 2-го порядка. Согласно второй теореме разложения (см. (1.21))

 

x(t)= m

Re s [X(pk )ep k t ]. Находим последовательно вычеты:

 

 

 

 

 

 

 

 

 

k =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

pt

 

 

 

 

 

 

 

 

2

 

pt

 

1) Re s [X(p1 )ep1 t ]= lim (p i)

 

p

e

 

 

 

 

= lim

 

p

e

=

 

 

 

 

 

 

 

 

 

 

 

 

 

(p 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pi

 

 

1)(p 2 1)

 

pi (p 2 1)2 (p + i)

 

 

ei t

 

 

i ei t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

=

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Re s [X(p2 )ep2 t ]= lim

 

p2 (p + i)ep t

 

 

 

= lim

 

 

p2 ept

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

(p i)(p2 1)2

 

 

 

 

 

 

 

 

 

 

 

 

 

p→−i (p2 +1)(p2 1)2

 

pi

 

 

 

 

 

e

i t

 

i ei t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

=

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8i

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]