Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РГР-ки по математике.doc
Скачиваний:
19
Добавлен:
06.11.2018
Размер:
3.82 Mб
Скачать

Пример выполнения варианта расчетно-графической работы.

Задание 1. Найти область решения системы неравенств. Сделать чертеж.

Решение.

Заменим в данной системе каждое неравенство равенством. По полученным уравнениям построим прямые. Каждая прямая разделит плоскость на две полуплоскости, в одной из которых выполняется неравенство, в другой - нет. Часть плоскости, в которой выполняются все неравенства и есть область решения.

Рис.1

Ответ. Областью решения служит четырехугольник ABCD.

Задание 2. Решить систему уравнений двумя способами:

  1. Методом Гауcса

  2. Матричным методом.

Решение.

Вычислить определитель системы ∆:

∆==

Следовательно, система имеет единственное решение.

Решим систему методом Гаусса. Составим расширенную матрицу, и, применяя элементарные преобразования, приведем ее к диагональному виду

Проверка:

Решим систему матричным методом. Составим обратную матрицу А-1.

Вычислим алгебраическое дополнение Аίj:

Ответ:

Задание 3. Дана пирамида : , , , .

Найти:

1)угол между ребрами и .

2)уравнение плоскости ;

3)уравнение и длину высоты, опущенной из вершины на грань ;

4)угол между ребром и гранью ;

5)объем пирамиды;

6)площадь грани . Сделать чертеж.

Решение.

1)Найти координаты векторов и:

= = = =

Вычислим косинус угла образованного векторами и:

2)Запишем уравнение плоскости, проходящей через три точки:

Уравнение плоскости :

3)Вычислим векторное произведение векторов и :

Так как вектор векторного произведения перпендикулярен плоскости , то его можно принять за направляющий вектор высоты . Уравнения высоты будет иметь вид:

Найдем координаты точки , пересечения прямой с плоскостью . Запишем уравнение плоскости :

Уравнение высоты запишем в параметрической форме и решим систему:

; ;

Вычислим длину высоты :

Уравнение высоты :

Длинна

4)Вычислим синус угла между ребром и гранью :

рад.

5)вычислим объем пирамиды :

ед.

6) Вычислим площадь грани :

ед

Сделаем чертеж:

Рис. 2

Задание 4. Даны векторы в некотором базисе.

Показать, что векторы образуют базис и найти координаты вектора в базисе .

=, =,= , =

Решение.

Три вектора образуют базис в пространстве, если они некомпланарны. Условием компланарности трех векторов служит равенство

Вычислим смешенное произведение:

Следовательно, векторы образуют базис.

Найдем координаты вектора d в этом базисе.

Разложение вектора в базисе , имеет вид: =

Переходя к координатам записи, получим:

Решим систему по формуле Крамера:

∆=9

Найдем вспомогательные определители:

, ,

Искомое разложение имеет вид: +-

Задание 5. Привести уравнение кривой к каноническому виду. Сделать чертеж. Найти координаты фокусов и вершин. .

Решение.

Выделим полные квадраты по и :

Полученное уравнение - уравнение гиперболы. Центр симметрии в точке 0(0: 3). Действительная полуось гиперболы ; мнимая полуось .

Получим координаты фокусов:

, .

Координаты вершин: ,, ,

Рис.3

Задание 6. Дано комплексное число . Записать комплексное число в алгебраической и трибометрической формах. Найти все корни уравнений . Результат изобразить схематически.

Решение.

Запишем комплексное число в алгебраической форме:

Найдем модуль комплексного числа:

Решим уравнение: .

Запишем число z в тригонометрической форме:

По правилу извлечения корня третьей степени из z ,получим:

Изобразим схематически полученные результаты.

Алгебраическая форма:

Тригонометрическая форма:

Корни уравнения:

Задание 7. Найти собственные векторы линейного преобразования, приводящего квадратическую форму к каноническому виду. Установить вид кривой и сделать чертеж.

Решение.

Составим матрицу квадратной формы:

Найдем собственные значения и собственные векторы линейного преобразования, определяемого матрицей А:

Найдем корни полученного уравнения:

.

Найдем собственные векторы, соответствующие собственным значениям:

Пусть , тогда

Собственный вектор . Найдем единичный вектор: =.

Пусть , тогда .

Собственный вектор = Единичный вектор: =

Составим матрицу преобразования:

Запишем формулы преобразования координат:

Поставим в квадратную форму:

Полученное уравнение описывает гиперболу.

Действительная полуось гиперболы , мнимая полуось .

Сделаем чертеж.

Рис. 5

Содержание

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]