Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 8. Квантовая механика I.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
3.87 Mб
Скачать

§ 6. Механика квантовой механики

Мы покажем вам сейчас, почему полезны эти законы. Пусть у нас есть атом в заданном состоянии (под этим мы подразумеваем, что он как-то был приготовлен), и мы хотим знать, что с ним бу­дет в таком-то опыте. Иными словами, мы начинаем с состояния  атома и хотим знать, каковы шансы, что он пройдет через при­бор, который пропускает атомы только в состоянии . Законы го­ворят, что мы можем полностью описать прибор тремя комплексными числами <|i> — амплитудами того, что каждое из базисных состояний окажется в состоянии , и что мы, пустив атом в прибор, можем предсказать, что произойдет, если опишем состояние атома, задав три числа <i|>,— амплитуды того что атом из своего первоначального состояния перейдет в лю­бое из трех базисных состояний. Это очень и очень важная идея, Рассмотрим другую иллюстрацию. Подумаем о следующей задаче. Начинаем с прибора S, затем имеется какая-то сложная мешанина, которую мы обозначаем A, а дальше стоит прибор R:

Под А мы подразумеваем любое сложное расположение прибо­ров Штерна — Герлаха — с перегородками и полуперегород­ками, под всевозможными углами, с необычными электрически­ми и магнитными полями,— словом, годится все, что вам придет в голову. (Очень приятно ставить мысленные эксперименты — тогда нас не тревожат никакие заботы, возникающие при реаль­ном сооружении приборов!) Задача состоит в следующем: с какой амплитудой частица, входящая в область A в состоянии (+S), выйдет из него в состоянии (0R), так что сможет пройти через последний фильтр R? Имеется стандартное обозначение для такой амплитуды:

<0R|A|+S>.

Как обычно, это надо читать справа налево: < Конец | Через | Начало>.

Если случайно окажется, это А ничего не меняет, а просто яв­ляется открытым каналом, тогда мы пишем

<0R |1|+S>=<0R|+S>; (3.29)

эти два символа равнозначны. В более общих задачах мы можем заменить (+S) общим начальным состоянием , а (0R) об­щим конечным состоянием  и захотеть узнать амплитуду

<|A|>.

Полный анализ прибора А должен был бы дать нам амплитуду <|А|> для каждой мыслимой пары состояний  и  — бес­конечное количество комбинаций! Как же сможем мы тогда дать краткое описание поведения прибора А? Это можно сде­лать следующим путем. Вообразим, что мы видоизменили прибор (3.28) так:

На самом деле это вовсе не видоизменение, потому что широко раскрытые приборы Т ничего нигде не меняют. Но они подска­зывают нам, как проанализировать проблему. Имеется опре­деленная совокупность амплитуд <i|+S> того, что атомы из S перейдут в состояние i прибора Т. Затем имеется другая совокупность амплитуд того, что состояние i (по отношению к Т), войдя в А, выйдет оттуда в виде состояния j (по отношению к Т). И наконец, имеется амплитуда того, что каждое состоя­ние j пройдет через последний фильтр в виде состояния (0R). Для каждого допустимого пути существует амплитуда вида

<0R|j><j|A|i><i|+S>,

и полная амплитуда есть сумма членов, которые можно полу­чить из всех сочетаний i и j. Нужная нам амплитуда равна

Если (О Л) и (+S) заменить общими состояниями  и , то полу­чится выражение такого же рода; так что общий результат выглядит так:

Теперь заметьте, что правая часть (3.32) на самом деле «проще» левой части. Прибор А полностью описан девятью числами <j|А|i>, сообщающими, каков отклик А на три базисных состояния прибора Т. Как только мы узнаем эту де­вятку чисел, мы сможем управиться с любой парой входных и выходных состояний  и , если только определим каждое из них через три амплитуды перехода в каждое из трех базисных состояний (или выхода из них). Результат опыта предсказы­вается с помощью уравнения (3.32).

В этом и состоит основной вывод квантовой механики частицы со спином 1. Каждое состояние описывается тройкой чисел — амплитудами пребывания в каждом из базисных состояний (из избранной их совокупности). Всякий прибор описывается де­вяткой чисел — амплитудами перехода в приборе из одного ба­зисного состояния в другое. Зная эти числа, можно подсчитать что угодно.

Девятка амплитуд, описывающая прибор, часто изобра­жается в виде квадратной матрицы, именуемой матрицей

<j|A|i>:

Вся математика квантовой механики является простым расши­рением этой идеи. Приведем несложный пример. Пусть име­ется прибор С, который мы хотим проанализировать, т. е. рассчитать различные <j|С|i>. Скажем, мы хотим знать, что случится в эксперименте типа

Но затем мы замечаем, что С просто состоит из двух частей: стоящих друг за другом приборов А и В. Сперва частицы про­ходят через А, а потом — через B, т. е. можно символически записать

Мы можем прибор С назвать «произведением» А и В. Допустим также, что мы уже знаем, как эти две части анализировать; таким образом, мы можем узнать матрицы А и В (по отношению к Т). Тогда наша задача решена. Мы легко найдем <|С|> для любых входных и выходных состояний. Сперва мы напишем

Понимаете, почему? (Подсказка: представьте, что между А к В поставлен прибор Т.) Если мы затем рассмотрим особый случай, когда  и  также базисные состояния (прибора Т), скажем i и j, то получим

Это уравнение дает нам матрицу прибора «произведения» С через матрицы приборов А и В. Математики именуют новую матрицу <j|С|i>, образованную из двух матриц <j|В|i> и <j|А|i> в соответствии с правилом, указанным в (3.36), матричным «произведением» ВА двух матриц В и А. (Заметьте, что порядок существен, АВВА.) Итак, можно сказать, что матрица для стоящих друг за другом двух частей прибора — это матричное произведение матриц для этих двух приборов порознь (причем первый прибор стоит в произведении справа). И каждый, кто знает матричную алгебру, поймет, что речь идет просто об уравнении (3.36).