Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
молекулярно.doc
Скачиваний:
91
Добавлен:
30.11.2018
Размер:
505.34 Кб
Скачать

Внутренняя энергия. Внутренняя энергия идеального газа

Энергию движения и взаимодействия между собой всех частиц, из которых состоит тело, называют внутренней энергией. К внутренней энергии, в частности, относится кинетическая энергия теплового движения молекул и атомов, входящих в состав данного тела, кинетическая энергия электронов, движущихся в атомах вокруг ядер, потенциальная энергия взаимодействий между собой молекул, атомов, электронов и ядер, нуклонов в ядре и т. д. В понятие внутренней энергии не входит кинетическая и потенциальная энергия данного тела как единого целого. Внутренняя энергия однозначно определяется совокупностью параметров, характеризующих состояние данной системы, т. е. является однозначной функцией состояния этой системы. Внутреннюю энергию принято обозначать буквой U.

В тепловых явлениях, протекающих при средних температурах, изменение внутренней энергии U связано с изменением кинетической и потенциальной энергии молекул, а остальные компоненты внутренней энергии при этом не изменяются. Поэтому в подобных процессах можно считать, что внутренняя энергия тела равна сумме кинетических энергий хаотического теплового движения всех молекул относительно центра масс этого тела и потенциальных энергий взаимодействия всех молекул между собой. Внутренняя энергия идеального газа представляет собой кинетическую энергию молекул этого газа. . Здесь i – число степеней свободы молекулы. Последнее равенство получено на основании уравнения состояния идеального газа. Внутренняя энергия идеального газа изменяется только при изменении температуры. Например, при изотермическом изменении его объема не изменяется.

При изменении состояния тела его внутренняя энергия изменяется. Например, при повышении температуры тела его внутренняя энергия увеличивается, так как увеличивается средняя кинетическая энергия движения молекул этого тела. С понижением температуры внутренняя энергия тела уменьшается. Внутренняя энергия изменяется при деформации тела и при переходе вещества из одного агрегатного состояния в другое, так как при этом меняется взаимное расположение взаимодействующих между собой молекул и, следовательно, изменяется их потенциальная энергия.

Количество теплоты

Изменить внутреннюю энергию термодинамической системы можно двумя различными путями: путем совершения работы или путем теплопередачи.

Теплопередачей (или теплообменом) называют передачу тепловой энергии от одной термодинамической системы другой без совершения работы и при этом тепловая энергия не превращается в другие формы энергии.

Возможны три разных способа теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность - это передача тепла от горячего тела холодному при их непосредственном соприкосновении. Конвекция - это передача тепла путем взаимного перемещения теплых и холодных слоев жидкости или газа. При этом теплые слои как более легкие поднимаются вверх, а на их место сверху опускаются более тяжелые холодные слои, которые нагреваются и тоже поднимаются вверх, и т. д. Излучение - это передача тепла с помощью электромагнитных волн.

При теплопередаче на границе между горячим и холодным телами молекулы горячего тела отдают часть своей кинетической энергии молекулам холодного тела и поэтому начинают двигаться медленнее, а молекулы холодного тела - быстрее. Из-за этого температура горячего тела понижается, а холодного повышается и в конце процесса теплопередачи их температуры выравниваются. В процессе теплообмена одни тела отдают, а другие - получают некоторое количество теплоты Q. Количество теплоты - это мера изменения внутренней энергии тела, не связанного с совершением работы и переносом вещества. Необходимо помнить, что тело может отдавать или получать только энергию, а количество теплоты Q является лишь числовым эквивалентом энергии, отданной или полученной телом в процессе теплообмена. Количество теплоты зависит от рода процесса и не является функцией состояния системы.

Количество теплоты Q, необходимое для нагревания тела (или отдаваемое телом при охлаждении), пропорционально массе тела m, изменению его температуры T и зависит от вещества, из которого состоит тело: Q = c m (t2 - t1), где с - удельная теплоемкость вещества . Удельная теплоемкость вещества численно равна тому количеству теплоты, которое необходимо сообщить данному веществу массой 1 кг для ее нагревания на 1 К.

Теплоемкостью тела С называют количество теплоты, которое необходимо сообщить данному телу для его нагревания на 1 К, т.е. .

Молярной теплоемкостью вещества называют количество теплоты, которое необходимо для нагревания 1 моль данного вещества на 1 К, т. е. , где М —молярная масса вещества.

Удельная теплота сгорания вещества q характеризует количество теплоты Q, выделяющейся при полном сгорании 1 кг массы данного вещества, т. е. q = Q/m.