Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6 глава.doc
Скачиваний:
7
Добавлен:
02.12.2018
Размер:
377.86 Кб
Скачать

Часть I. Общая нозология

тогены (болезнетворные факторы бактериально­го происхождения), для которых характерно внутриклеточное паразитирование (вирусы, бак­терии, грибы, простейшие и др.); дендритные клетки пиноцитируют вирусы; В-клетки интер-нализируют различные токсины. Следующее со­бытие - процессинг, который представляет со­бой ферментативный катализ макромолекулы антигена внутри антигенпредставляющей клет­ки. В результате процессинга происходит выс­вобождение доминирующей антигенной детерми­нанты (иммуноактивного пептида, или суперан­тигена), которая загружается на желобки соб­ственных молекул HLA I или HLA II класса, выводится на поверхность клетки для представ­ления (presentation) лимфоцитам. В зависимос­ти от происхождения антигена выделяют два пути процессинга.

Экзогенные антигены презентируются в ком­плексе с молекулами HLA II наивным CD4 + + Т-клеткам (путь, опосредуемый HLA II). Сначала эти антигены эндоцитируются и фраг-ментируются с помощью протеолитических фер­ментов в эндосомах (лизосомах). В то же самое время молекулы HLA II, связанные с шаперона-ми (калнексином и инвариантной цепью И), син­тезируются и собираются в эндоплазматическом ретикулуме. Ii-цепь необходима для защиты же­лобка молекулы HLA вплоть то того момента, пока сюда не будет загружен антигенный пеп­тид. Затем комплекс HLA Il/li-цепь транспор­тируется через аппарат Гольджи в эндосомы, где Ii-цепь теряется, а роль по защите желобка на­чинают выполнять дополнительные молекулы HLA-DM и, вероятно, HLA-DO. Наконец, анти­генный пептид загружается на желобок молеку­лы HLA II, и этот комплекс экспрессируется на поверхности клетки.

Эндогенные, или внутриклеточно располо­женные, антигены микробного происхождения загружаются на молекулы HLA I (путь, опосре­дуемый HLA I) для представления наивным CD8+ Т-клеткам. Сначала в отличие от экзоген­ных антигенов такие цитоплазматические анти­гены перемещаются в цитозоль, где они расщеп­ляются в крупном протеолитическом комплексе - протеасоме. После этого антигенный пептид транспортируется через «туннель» молекул ТАР-1/ТАР-2 в эндоплазматический ретикулум. Одновременно здесь происходит сборка молеку­лы HLA I, желобок которой (по аналогии с

Ii-цепью у HLA И) находится «под защитой» ша-перонов (сначала калнексина, затем кальрети-кулина), а укладка всей молекулы HLA I в пос­ледующем стабилизируется дополнительными молекулами (тапазином и др.). После загрузки антигенного пептида на желобок HLA I этот ком­плекс транспортируется на поверхность клетки.

Небелковые антигены, вероятно, загружают­ся на не-HLA антигенпредставляющие молеку­лы CD1.

В целом макрофаги и В-клетки вовлечены соответственно в Т-клеточный, или гуморальный, иммунный ответ по пути, опосредованному HLA II, а дендритные клетки двух типов способны к перекрёстной презентации. Дендритная клетка типа 1 осуществляет процессинг эндогенных антигенов по пути с HLA I для запуска Т-кле-точного ответа, а дендритная клетка типа 2 про-цессирует экзогенные антигены по пути с HLA II и включает В-клеточный ответ.

Распознавание протекает в течение несколь­ких часов. Однако при нарушениях клеточной миграции и межклеточных взаимодействий оно может быть более длительным. Возможно, это приводит к замедлению всего иммунного ответа на патоген. Клиническими проявлениями этой стадии являются повышение температуры тела, мышечная слабость, снижение аппетита и сон­ливость. По большей части они обусловлены си­стемными эффектами цитокинов, о чём будет более подробно рассказано далее.

Для того чтобы мог стартовать специфичес­кий иммунный ответ на конкретный антиген, необходима встреча Т- и В-лимфоцитов соответ­ствующего клона с антигенпредставляющей клет­кой. Некоторые антигены бактерий (Т-незави-симые антигены) распознаются с помощью BCR В-клеток и не требуют помощи со стороны Т-хелперов. Большинство нативных антигенов (так называемых Т-зависимых антигенов) рас­познаётся по «полной программе» наивными CD4+ Т-хелперами типа 1 и CD8+ Т-клетками (для включения Т-клеточного ответа, или пути Т-хелперов 1), а также наивными CD4 + Т-хел­перами типа 2 (для включения гуморального ответа, или пути Т-хелперов 2). Интересно, что для прайминга CD8+ Т-клеток необходимо учас­тие CD4+ Т-хелперов 1.

Во время распознавания лимфоциты воспри­нимают три типа обязательных сигналов - один специфический и два неспецифических:

Глава б / РОЛЬ ИММУННОЙ СИСТЕМЫ В ПАТОЛОГИИ

155

Костимулирующие молекулы при иммунном ответе

Таблица 23

Клетки

Молекула

Функция

Антигенпредставляющие клетки

В7.1, В7.2

Лиганды для CD28, CTLA-4

Т-хелпер 1

CD28 CTU\-4(CD152)

Активационный сигнал Ингибирующий сигнал

Т-хелпер 2

OX40L

Активационный сигнал

В-лимфоцит

CD40 CD22

Активационный сигнал на переключение синтеза различных классов антител Ингибирующий сигнал

  1. антигенный пептид/HLA I или HLA II;

  2. цитокины;

  3. костимулирующие молекулы. Антигенный пептид, загружаемый на HLA I

или HLA II в результате процессинга, служит специфическим сигналом. Это одновременное «двойное» распознавание «своего» (белков HLA) и «несвоего» (чужого антигена) было открыто лауреатами Нобелевской премии (1996) Р.С. Doherty (Австралия, США) и R.M. Zinkernagel (Швейцария) и оказалось довольно универсаль­ным явлением. Секретируемые цитокины и экс-прессируемые костимулирующие молекулы яв­ляются двумя обязательными неспецифически­ми сигналами. Более того, для обеспечения на­дёжного физического контакта клеток необхо­димо также взаимодействие таких адгезивных молекул, как LFA-1, ICAM-1, ICAM-2, ICAM-3. Цитокины играют одну из главных ролей в неспецифической регуляции иммунного ответа. Т- и В-лимфоциты получают цитокиновые сиг­налы от антигенпредставляющих клеток, NK-клеток, тучных клеток и др. Обратный сигнал от лимфоцитов, например секретируемый ИФНу, способствует реэкспрессии HLA I/ HLA II на антигенпредставляющих клетках. Цитокины, действующие на ранних стадиях иммунного от­вета, могут быть разделены на две группы в за­висимости от его направления:

1. ИЛ-2, ИЛ-12, ИЛ-18, ИФН-у, ФНОа/р (для пути Т-хелперов типа 1).

2. ИЛ-4 (для пути Т-хелперов типа 2). Однако на следующих стадиях иммунного

ответа (клональная экспансия, созревание эф­фекторов, переключение синтеза изотипов анти­тел) в процесс вовлекаются другие цитокины.

Костимулирующие молекулы также играют важную роль в неспецифической регуляции им­мунного ответа (табл. 23).

Активация клеток является результатом сиг­нальной трансдукции, которая осуществляется серией сложных внутриклеточных реакций. После распознавания первоначально наблюдается активация связанных с корецепторами и моле­кулами CD3 (на Т-клетках) или CD79 (на В-клет-ках) тирозинкиназ нескольких семейств (Lck, Fyn, Blk, Btk, Lyn, Zap70, Syk и др.), затем че­рез посредничество адаптерных белков включа­ются сигнальные пути. Один из них связан с активацией фосфолипазы Су, образованием инозитолтрифосфата и диацилглицерола, акти­вацией протеинкиназы С и мобилизацией внут­риклеточного Са2+, транскрипцией гена ИЛ-2. Данный цитокин является ключевым ростовым фактором для лимфоцитов при иммунном отве­те. Второй сигнальный путь связан с обменом арахидоновой кислоты и приводит к транскрип­ции генов структурных белков, необходимых для осуществления митозов клеток.

Клональная экспансия лимфоцитов представ­ляет собой их бурную пролиферацию, которая протекает в периферических органах иммунной системы. Пролиферирующие В-лимфоциты об­разуют вторичные фолликулы в лимфатических узлах (центробластная стадия), при этом раз­множение клеток регулируется рядом цитоки-нов: ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10, ИЛ-13, ИЛ-14, ИФН-у, ФНО и др. В последующем цен-тробласты начинают превращаться в центроци-ты, которые мигрируют на периферию фолли­кулов (центроцитарная стадия). В этот момент клетки вступают в период соматических гипер­мутаций, который является своеобразным спо­собом селекции нужной специфичности BCR. Происходит позитивный отбор клеток с высоко­специфичным BCR и негативный отбор В-лим-фоцитов с низкоспецифичным рецептором. В процессе созревания В-клетки претерпевают

морфологические изменения (иммунобласт, за­тем лимфоплазмоидная клетка и, наконец, плаз-моцит) и мигрируют в костный мозг и MALT для синтеза антител различных классов. Синтез ранних антител IgM наблюдается уже к концу первых суток клинического инфекционного эпи­зода, а высокоспецифических IgG - на 5-7-е сут.

Клональная экспансия и созревание Т-клеток протекают в паракортикальных зонах лимфати­ческих узлов и периартериолярных простран­ствах селезёнки. Распознавшие антиген клетки вступают в пролиферацию и превращаются в лимфобласты. Клоны CD8+ Т-клеток нарастают быстро, а клоны CD4+ Т-лимфоцитов - более медленно. В целом клональная экспансия и диф-ференцировка регулируются разными цитокина-ми (ИЛ-2, ИЛ-7, ИЛ-9, ИЛ-12, ИЛ-15, ИФН-у, ФНО и др.) и адгезивными молекулами. В про­цессе дифференцировки значительно изменяется фенотип Т-лимфоцитов, но в отличие от В-лим-фоцитов они не меняются морфологически.

Характерным клиническим эквивалентом ста­дий клональной экспансии и дифференцировки является увеличение периферических лимфати­ческих узлов, миндалин, видимых лимфатичес­ких фолликулов и селезёнки. Можно наблюдать эти симптомы при респираторной, урогениталь-ной или значительной системной инфекциях.

По окончании иммунного ответа наряду с эф-фекторными клетками формируются Т- и В-клет-ки памяти. В отличие от небольших сроков жиз­ни, характерных для эффекторных лимфоцитов,

Рис. 38. Первичный и вторичный гуморальный

ответ. В первом случае нарастание IgG отстает от

нарастания IgM, при этом, поскольку IgM является

низкоспецифичным по отношению к патогену, отмечаются все симптомы инфекционного заболева­ния (выделено серым). При вторичном ответе пато­ген связывается сразу высокоспецифичными антите­лами класса IgG, поэтому клинических проявлений

болезни нет. По горизонтали - время (сут); по вертикали - содержание иммуноглобулинов (г/л)

клетки памяти остаются жизнеспособными в течение длительного времени (пожизненно). Су­ществуют CD4+ и CD8+ Т-клетки памяти, В-клет-ки памяти и долгоживущие плазматические клетки. В отличие от наивных Т-лимфоцитов Т-клетки памяти характеризуются фенотипом CD45RO+, CD44hi, быстрым HLA-независимым циклом и способностью секретировать большие количества цитокинов. Долгоживущие плазма­тические клетки обеспечивают дополнительный механизм поддержания синтеза иммуноглобули­нов без дополнительной антигенной стимуляции в течение 1,5 лет.

Вторичный иммунный ответ протекает в ус­коренном режиме за счёт клеток памяти (рис. 38). Появление IgM в сыворотке крови часто указывает на свежую инфекцию или реактива­цию персистирующего патогена, а синтез IgG соответствует наличию иммунной памяти к од­нажды перенесённой инфекции. При таком ус­коренном синтезе IgG клинические проявления инфекционной болезни обычно отсутствуют.

6.2.2. Эффекторные реакции

Физические барьеры (кожа, слизистые оболоч­ки с их мерцательным эпителием, секреты) яв­ляются первой линией защиты, часто очень эф­фективной. Многие патогены могут быть унич­тожены с помощью лизоцима, бактерицидных жирных кислот, р-дефензина, кислотности желудочного сока и др. Печень представляет собой метаболический барьер для патогенов за счёт моноксигеназной системы (цитохром Р450).

У здоровых людей в сыворотке крови посто­янно присутствуют неспецифические натураль­ные антитела, представляющие собой IgM, ко­торые направлены против антигенов условнопа-тогенной флоры. Существуют также каталити­ческие антитела, обладающие протеиназной и нуклеазной активностью.

Система естественной цитотоксичности (NK-клетки и интерфероны) обеспечивает эк­стренную защиту против вирусов и других внут­риклеточных патогенов без воспалительной ре­акции. NK-клетки подвергают апоптозу любую клетку в организме, если она не экспрессирует на своей поверхности HLA I, поэтому мишеня­ми для них являются собственные клетки, ин­фицированные вирусами, опухолевые, деградиру­ющие и повреждённые клетки. Распознав HLA I

Типы специфических эффекторных механизмов

Таблица 24

Опосредуемые В-клетками

Опосредуемые Т-клетками

1. Связывание антигена в иммунные комплексы и его: а) простая нейтрализация; б) деградация в связи с активацией комплемента по классическому пути; в) опсонизация антителами IgM/IgG и последующий фагоцитоз

1. Апоптоз клеток-мишеней, индуцированный CD8+ цитотоксическими Т-клетками

2. Антителозависимая клеточная цитотоксичность (АЗКЦ), например при отторжении трансплантата

2. Деградация антигена путем индуцированного CD4+ Т-эффекторами иммунного воспаления (ГЗТ) с активацией макрофагов и других клеток

на какой-либо встретившейся клетке, NK-клет-ка, напротив, получает ингибирующий сигнал и не индуцирует апоптоз этой клетки.

При попадании патогенов в ткань быстро раз­вивается неспецифическое воспаление. Этот про­цесс включает острофазную реакцию белков сыворотки крови, активацию комплемента по альтернативному пути и неспецифический фа­гоцитоз нейтрофилами и макрофагами. Такое воспаление является острым, не зависит от при­сутствия антител и сопровождается активацией эндотелия.

Если патогену удаётся миновать неспецифи­ческий эшелон защиты, на него развивается иммунный ответ, следствием которого является включение специфических эффекторных меха­низмов, направленных на деструкцию данного патогена (табл. 24). Следует иметь в виду, что иммунное воспаление типа IV (по Gell и Coombs) с иммунологической точки зрения является нор­мальной эффекторной реакцией на внутрикле-точно расположенные патогены. Однако нере­гулируемое иммунное воспаление с широким распространением на собственные ткани явля­ется безусловным патологическим явлением.

6.2.3. Регуляция иммунных процессов

Иммунный ответ является хорошо регулиру­емым процессом. Регуляция имеет большое зна­чение для достижения нужного уровня специ­фичности и иммунной памяти, включения имен­но тех эффекторных механизмов, которые бы наилучшим образом отвечали потребностям орга­низма, а также для исключения нежелательных последствий гиперактивации иммунной системы

(например, при чрезмерном иммунном воспале­нии, аллергиях и аутоиммунных расстройствах).

Регуляция иммунных процессов осуществля­ется с помощью механизмов иммунного самокон­троля за счёт влияния печени, эндокринной системы, ЦНС и в связи с генетическими меха­низмами контроля. Система иммунной саморе­гуляции включает принцип отрицательной об­ратной связи, идиотип-антиидиотипическую сеть, баланс Txl/Tx2, цитокиновую регуляцию, контроль со стороны костимулирующих молекул и др. Одну из значимых ролей играют регуля-торные Т-лимфоциты, которые функционируют, имея разные цитокиновые профили (табл. 25).

Печень является главным образом источни­ком иммуносупрессивных факторов (а-фетопро-теин, «pit» NK-клетки и др.). Гормоны оказыва­ют дозозависимые разнонаправленные эффекты в отношении иммунных процессов. В физиоло­гических концентрациях СТГ, ТТГ, тироксин, трийодтиронин, инсулин, пролактин стимулиру­ют иммунный ответ, а АКТГ, глюкокортикоиды и половые гормоны - супрессируют. В последние годы интенсивно исследуется влияние на иммун­ную систему гормона эпифиза мелатонина, ко­торый, наряду с иммуностимулирующим дей­ствием, имеет также ритморегулирующий, сно­творный, антиоксидантный и другие эффекты. ЦНС влияет на иммунную систему через посред­ничество нейротрансмиттерных (допамин-, серо-тонин-, ГАБА- и пептидэргических) рецепторов, проявляя стереотипную координацию иммунных процессов, связывая их с разными сферами пси­хоэмоциональной деятельности мозга.

Генетическая регуляция иммунитета позво­ляет обеспечивать многообразие антигенраспоз-нающих рецепторов за счёт генных реаранжи-

158