Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция, предел функции.doc
Скачиваний:
8
Добавлен:
05.12.2018
Размер:
726.02 Кб
Скачать

Предел функции и арифметические операции.

Теорема. Пусть и , тогда

1) =АВ

2)

3)

4) (если φ(x)≠0, B≠0)

Доказательство. Докажем равенство 2.

Пусть xn→x0, n→, тогда f(xn)→n, n→, φ(xn)→n, n→.

По свойствам предела последовательностей

Это равенство доказано для любой переменной xn→x0, n→,(xn≠x0), поэтому

ч.т.д.

Остальные равенства доказываются аналогично.

Предел функции и неравенства.

Теорема 1. (б.д.) Пусть и и А>B, тогда в некоторой окрестности V(x0) точки х0 xV(x0)-{x0} f(x)>φ(x).

Теорема 2. Пусть и и в некоторой окрестности V(x0) точки х0 xV(x0)-{x0} выполняется одно из условий: 1) f(x)<φ(x); 2) f(x)φ(x), тогда АВ.

(Т.е. в функциональном неравенстве можно переходить к пределу).

Доказательство 1. Допустим, А>B, тогда в некоторой окрестности V(x0) точки х0 xV(x0)-{x0} f(x)>φ(x), что противоречит обоим условиям. Ч.т.д.

Доказательство 2. Через последовательности (сам-но).

(Возьмем последовательность xn→x0, n→, тогда f(xn)A, φ(xn)B и для достаточно больших n f(xn)<φ(xn) (или f(xn)φ(xn)). По свойствам пределов последовательностей AB)

Следствие. Пусть в некоторой окрестности V(x0) точки х0 xV(x0)-{x0} выполняется одно из условий: 1) f(x)<С; 2) f(x)С, тогда АС. (случай, когда φ(x)=С).

Теорема 3. (О пределе промежуточных функций).

Даны функции f1(x), f2(x) и φ(x) и в некоторой окрестности V(x0) точки х0 xV(x0)-{x0} f1(x)φ(х) f2(x). Тогда, если f1(x)А при х→х0 и f2(x)А при х→х0, то и φ(x)А при х→х0.

Доказательство. Возьмем произвольную последовательность xn→x0, n→ (xn≠x0), тогда f1(xn)A, f2 (xn)А при n→. Тогда для достаточно больших N при n>N выполняется неравенство: f1(xn)φ(хn) f2(xn).

По свойствам пределов последовательностей φ(xn)А при n→, следовательно и φ(x)А при х→х0 ч.т.д.

(Доказательство 2. Т.к. g(x)=h(x)=A, то

E>0 δ=δ(E) x: 0<|x-x0|<δ |g(х)-A|<E и |h(х)-A|<E или

A-E<g(x)<A+E и A-E<h(x)<A+E (1)

Т.к. по условию g(x)≤f(x)≤h(x), то из неравенства (1) следует, что

А-Е≤f(x)≤А+Е, т.е. |f(х)-A|<E, т.е. f(x)=A. Ч.т.д.)

Односторонние пределы.

Определение. Число А называется правым пределом функции f(x) при х→х0, если для любого сколь угодно малого числа >0 можно указать такое число δ>0 (зависящее от , δ=δ()), что для всех хХ таких, что х0<х<х0+δ выполняется неравенство |f(х)-A|<. (при попадании точки х в правую полуокрестность точки х0).

>0 δ=δ() x: х0<х<х0|f(х)-A|< (1)

f0+0)===А+ или f(x0+0)=A

Определение. Число А называется левым пределом функции f(x) при х→х0, если для любого сколь угодно малого числа >0 можно указать такое число δ=δ(), что для всех хХ таких, что х0-<х<х0 выполняется неравенство |f(х)-A|<.

(при попадании точки х в левую полуокрестность точки х0).

>0 δ=δ() x: х0-δ<х<х0 |f(х)-A|< (2)

f(a-0)=-. или f(x0-0)=A

Утверждения. 1) Если у функции f(x) при при х→х0 существует предел А в обычном смысле (т.е. двусторонний), то существуют оба односторонних предела f(х0+0) и f(х0+0) и они оба равны А.

2) Если у функции f(x) при при х→х0 существуют оба односторонних предела f(х0+0) и f(х0+0) и они оба равны А, то у f(x) при при х→х0 существует двусторонний предел, равный числу А.

Пример. (График).

Расширение понятия предела функции (Понятие предела функции на бесконечности. Бесконечные пределы.) (пример на каждый случай)

Определение 1. Число А называется пределом функции f(x) при х→+∞, если для любого сколь угодно малого числа >0 найдется такое число Т (зависящее от , Т=Т()), что для всех х таких, что x>Т выполняется неравенство |f(х)-A|<.

Т.е. >0 Т=Т(E) x: x|f(х)-A|<E (1)

Определение 2. Число А называется пределом функции f(x) при х→-∞, если для любого сколь угодно малого числа >0 найдется такое число Т (зависящее от , Т=Т()), что для всех х таких, что x<Т выполняется неравенство |f(х)-A|<.

Т.е. >0 Т=Т(E) x: x|f(х)-A|<E (2)

Определение 3. Пределом функции f(x) при х→х0 является +, если для любого сколь угодно большого числа С>0 найдется такое число =(С), что для всех х таких, что 0<|x-x0|<δ выполняется неравенство f(х)>C.

Т.е. C>0 =(С) x: 0<|x-x0|<δ f(х)>C (3) =+

Определение 4. Пределом функции f(x) при х→х0 является -, если для любого числа С<0 найдется такое число =(С), что для всех х таких, что 0<|x-x0|<δ выполняется неравенство f(х)<C.

Т.е. C<0 =(С) x: 0<|x-x0|<δ f(х)<C (4) =-

Пример. f(x)= - график.

Определение 5. Пределом функции f(x) при х→+ является +, если для любого сколь угодно большого числа С>0 найдется такое число T=T(С), что для всех х таких, что x>T выполняется неравенство f(х)>C.

Т.е. C>0 T=T(С) x: x>T f(х)>C (5) =+

Определение 6. Пределом функции f(x) при х→+ является -, если для любого числа С<0 найдется такое число T=T(С), что для всех х таких, что x>T выполняется неравенство f(х)<C.

Т.е. C<0 T=T(С) x: x>T f(х)<C (6) =-

Определение 7. Пределом функции f(x) при х→- является +, если для любого сколь угодно большого числа С>0 найдется такое число T=T(С), что для всех х таких, что x<T выполняется неравенство f(х)>C.

Т.е. C>0 T=T(С) x: x<T f(х)>C (7) =+

Определение 8. Пределом функции f(x) при х→- является -, если для любого числа С<0 найдется такое число T=T(С), что для всех х таких, что x<T выполняется неравенство f(х)<C.

Т.е. C<0 T=T(С) x: x<T f(х)<C (8) =-