Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Met1.doc
Скачиваний:
93
Добавлен:
05.12.2018
Размер:
2.43 Mб
Скачать

Тема 4. Множественная регрессия.

Линейная модель множественной регрессии имеет вид:

Y i = 0 + 1x i 1 +2x i 2 +…+ m x i m + i , (4.1.)

коэффициент регрессии j показывает, на какую величину в среднем изменится результативный признак Y, если переменную xj увеличить на единицу измерения, т. е. j является нормативным коэффициентом. Обычно предполагается, что случайная величина i имеет нормальный закон распределения с математическим ожиданием равным нулю и с дисперсией .

Анализ уравнения (4.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи уравнения (4.2.):

Y = X + , (4.2.)

Y – это вектор зависимой переменной размерности п  1, представляющий собой п наблюдений значений уi, Х— матрица п наблюдений независимых переменных X1, X 2, X 3 , … X m, размерность матрицы Х равна п (т+1); подлежащий оцениванию вектор неизвестных параметров размерности (т+1)  1; — вектор случайных отклонений (возмущений) размерности п  1. Таким образом,

Y = , X = , =

Уравнение (4.1) содержит значения неизвестных пара­метров 0,1,2,… ,m . Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрес­сии, в которой вместо истинных значений параметров под­ставлены их оценки (а именно такие регрессии и приме­няются на практике), имеет вид

Y =Ха + е=, (4.3)

где а — вектор оценок параметров; е — вектор «оценен­ных» отклонений регрессии, остатки регрессии е = Y - Ха; —оценка значе­ний Y, равная Ха.

Оценка параметров модели множественной регрессии с помощью метода наименьших квадратов.

Формулу для вычисления параметров регрессионного уравнения приведем без вывода

a = (Xт X )-1 X т Y (4.4).

Одним из условий регрессионной модели является предположение о линейной независимости объясняющих переменных, т. е., решение задачи возможно лишь тогда, когда столбцы и строки матрицы ис­ходных данных линейно независимы. Для экономических показате­лей это условие выполняется не всегда. Линейная или близкая к ней связь между факторами называется мультиколлинеарностью и приводит к линейной зависимости нормальных уравнений, что делает вычисле­ние параметров либо невозможным, либо затрудняет содержатель­ную интерпретацию параметров модели. Мультиколлинеарность может возникать в силу разных причин. На­пример, несколько независимых переменных могут иметь общий вре­менной тренд, относительно которого они совершают малые колебания. В частности, так может случиться, когда значения одной независимой переменной являются лагированными значениями другой. Считают явление мультиколлинеарности в исходных данных установленным, если коэффициент парной корреляции между двумя переменными больше 0.8. Чтобы избавиться от мультиколлинеарности, в модель включают лишь один из линейно связанных между собой факторов, причем тот, который в большей степени свя­зан с зависимой переменной.

В качестве крите­рия мультиколлинеарности может быть принято соблюдение следующих неравенств:

ryxi > rxixk , ryxk > rxixk , rxixk < 0.8

Если приведенные неравенства (или хотя бы одно из них) не выполняются, то в модель включают тот фактор, который наиболее тесно связан с Y.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]