Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
опт кв мех шк мфти.doc
Скачиваний:
10
Добавлен:
14.04.2019
Размер:
6.23 Mб
Скачать

Тема 1. Световые волны в прозрачной изотропной среде.

Волновые уравнения для светового поля.

Уравнения Максвелла рассмотрим при условиях: , , . Из ротора второго уравнения с учетом четвертого получим . С другой стороны для любого векторного поля . Откуда получаем волновое уравнение для поля

где — скорость волны. — определение показателя преломления . Следовательно .

Факультативно. Частные решения волнового уравнения.

Разделение временной и пространственных переменных решения волнового уравнения .

Пусть , подставим в волновое уравнение для A и разделим уравнение на RT, тогда одно слагаемое зависит только от , а другое — только от t. Следовательно, каждое из двух слагаемых равно константе, которую обозначим за . Тогда для функции координат получим — уравнение Гельмгольца, а для функции времени — уравнение гармонических колебаний, где .

Разделение переменных решения уравнения Гельмгольца в декартовых координатах, пусть . Подставим это решение в уравнение Гельмгольца и разделим его на произведение XYZ. При этом слагаемые уравнения окажутся функциями разных переменных и, следовательно, каждое слагаемое — константа: , , , где . Решения для X, Y, Z — гармонические колебания от x, y, z.

Подставляя решения для X, Y, Z в R, а затем решения для R и T в A, получаем — решение в комплексной форме в виде плоских волн .

Разделение переменных в других системах координат приводит к другим решениям. Среди множества решений в цилиндрической системе координат отметим решение в виде цилиндрической волны , где — функция Бесселя с целым значком

Среди множества решений в сферической системе координат отметим решение в виде сферической волны .

Параметры плоской волны.

— амплитуда волны,

— начальная фаза волны,

— комплексная амплитуда волны,

T — период, — частота, — циклическая частота волны,

— фазовая скорость волны,

λ — длина волны, k — волновое число, — волновой вектор,

, , — циклические пространственные частоты волны,

— фаза волны.

Фазовая скорость.

Рассмотрим плоскую волну, и направим ось z вдоль вектора . Тогда , => — фаза волны. Тогда — уравнение постоянной фазы. Поскольку в это уравнение входит в качестве параметра время t, то это уравнение — уравнение движения поверхности постоянной фазы, движения фазовой поверхности.

Продифференцируем это уравнение по времени и получим откуда , где

— фазовая скорость волны.

Групповая скорость.

Рассмотрим две волны некоторой физической переменной A с разными, но близкими частотами, бегущие вдоль оси z . Введем обозначения , тогда , где можно рассматривать, как медленно меняющуюся амплитуду суммарной волны.

Для огибающей (или амплитуды) волны уравнение постоянной фазы примет следующий вид . Дифференцируя это уравнение по времени, получаем и, следовательно, .

Окончательно, — групповая скорость волны, сравните с фазовой скоростью волны .

Поперечность световых волн.

Рассмотрим выражение для плоской волны любой природы . Продифференцируем его по времени и получим . Аналогично, дифференцируя по пространственным координатам, получим . Подставим эти выражения в уравнения Максвелла. Начнем с первого уравнения => => => => , но , тогда .

Аналогично получаем: , , , , где — вектор Пойнтинга.

Соотношение длин векторов E и H в бегущей световой волне.

=> , но , тогда => , откуда в системе СГС Гаусса, или в системе СИ.

Интенсивность света.

Интенсивность — плотность потока энергии (энергия в единицу времени через единицу площади).

Связь интенсивности света с объемной плотностью энергии световой волны.

, где — фазовая скорость света, хотя казалось бы, должна быть групповая.