Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
osnova.docx
Скачиваний:
40
Добавлен:
16.04.2019
Размер:
287.47 Кб
Скачать

17.Правила диференц суммы,разн,произв,частн

  1. ;

  2. , где - постоянная;

  3. ;

  4. ;

  1. если , а , то производная сложной функции находится по формуле

,

где индексы указывают, по какому аргументу производится дифференцирование.

Th о производной обратной ф-ии

Предложение: Если производная обратной функции g для ф-ции f существует в точке y0, то g’(y0)=1/f’(x0), где y0=f(x0)

Доказательство: g(f(x))=x g’(f(x))=1

g’(f(x0))=g’(f(x0))*f’(x0)=1, g’(f(x0))=g(y0)=1/f’(x0)

Теорема: Пусть ф-ция f строго монотонно и непрерывно отображает () в (а,b) тогда  обратная ей ф-ция g, которая строго монотонно и непрерывно отображает (а,b) в (). Если f диф-ма в точке x0() и f’(x0)0, то g диф-ма в точке y0=f(x0) и g’(y0)=1/f’(x0)

19. Теорема Ролля.

Теорема Ролля: Если функция у=f(х) непрерывна на замкнутом промежутке [a,b], дифференцируема хотя бы в открытом промежутке (a,b) и на концах промежутка ее значения совпадают f(a)=f(b), то внутри промежутка найдется такая точка x=c, что f'(c)=0

Док-во: Если функция сохраняет постоянное значение на промежутке [a,b], f(х)= f(a)=f(b), то f'(c)=0 и в качестве точки с можно взять любую точку интервала (a,b).

Пусть теперь функция f(x) не является постоянной. По теореме Вейштраса существуют точки х1 и х2 на отрезке [a,b] , в которых достигаются наименьшее m и наибольшее М значения функции. Обе эти точки не могут быть концевыми для отрезка [a,b], т.к. из условия f(a)=f(b) вытекало бы, что m, следовательно, функция f(х) сохраняла бы постоянное значение, вопреки предположению.

Допустим, что не совпадает с концом отрезка точка х1, т.е. a< х1<b, тогда х1 является точкой локальности экстремума. По условия теоремы существует f'(х1). Из этих двух утверждений по теореме Ферма получаем f'(х1)=0, следовательно,

х1 можно принять за точку с.

Теорема Ферма (необходимое условие локального экстремума).

Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность 0-, х0+), для всех точек х которой выполняется неравенство f(х)f0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)f0).

Т еорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Док-во: Проведем его для случая максимума в точке х0. Пусть 0-, х0+) - та окрестность, для точек которой выполняется неравенство

З десь возможно как 1 и 2 варианты, но | ∆х| <δ

П ри ∆х<0, будет ∆y:∆x ≥0, поэтому

По условию теоремы, существует производная f'(х0)А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0

20.Производная высших порядков

Определение: Если ф-ция f диф-ма в некоторой окрестности точки xO, то ф-ция f’(x):xf’(x) в свою очередь может оказаться диф-мой в точке xO или даже в некоторой ее окрестности. Производная ф-ции f’(x) - называется второй производной (или производной порядка 2) ф-ции f в точке xO и обознача ется f”(x). Аналогично определяется третья и четвертая производная и так далее. Для единообразия обозначаем через fN(xO) - производную порядка n функции f в точке xO и при n=0 считаем f0(xO)=f(xO).

Замечание: Cуществование производной порядка n требует того чтобы существовала производная пордка (n-1) уже в некоторой окрестности точки xO (следует из теоремы о связи диф-ти и непрерывности), в таком случае функция xfN-1(x) непрерывна в точке xO, а при n2 все производные порядка не выше (n-2) непрерывны в некоторой окрестности точки xO.

Пусть функции у=f(х) и х=g(t) таковы, что из них можно составить сложную функцию у=f(g(t)). Если существуют производные у’(х) и х’(t) то cуществует производная у’(t)=у’(х)*х’(t).

Пусть функции у=f(х) и х=g(t) таковы, что из них можно составить сложную функцию у=f(g(t)) Если существуют производные у’(х) и х’(t) то существует производная у’(t)=у’(х)*х’(t)

+нужно док-во

Диференциалы высших порядков

dy= f‘(x)dx – диф. первого порядка ф-ции f(x) и обозначается d^2y, т.е. d^2y=f‘‘(x)(dx)^2. Диф. d(d^(n-1)y) от диф. d^(n-1)y наз-ся диф. n-ного порядка ф-ции f(x) и обознач. d^ny.

Опр-ие: Дифференциалом n-го порядка функции у=f(х) называется дифференциал первого порядка от дифференциала (n-1)-го порядка. (обозначается dny)По определению dny= d(dn-1y). Иногда dy называют диф. Первого порядка. В общем случае, dny=f(n)(х)dxn, в предположении, что n-ая производная f(n)(х) сущ-ет.

+нужно док-во

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]