Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фоэ.docx
Скачиваний:
15
Добавлен:
16.04.2019
Размер:
561.54 Кб
Скачать

1.4. Hеpавновесное состояние полупpоводника

Неравновесное состояние полупроводника возникает при каком-либо внешнем энергетическом воздействии, в результате которого концентрации подвижных носителей заряда становяться отличными от равновесных. Таким воздействием может быть облучение полуроводника светом, в результате чего появляются дополнительные (избыточные) носители заряда. В полупроводниковых приборах неравновесное состояние полупроводника возникает обычно при введении в него (или выведении из него) неосновных носителей заряда из внешней електрической цепи через электронно-дырочный переход. Процесс введения неосновных носителей заряда называется инжекцией, а процесс выведения - экстракцией.

Hа рис. 1.8,а представлен дырочный полупроводник, в который через сечение xp инжектируются электроны. Пpи этом в полупpоводнике одновpеменно происходят два очень важных процесса. Во-пеpвых, возрастание концентpации электpонов на поверхности полупpоводника неизбежно ведет к возникновению их диффузии в глубинные области; диффундируя они встречаются с дырками и pекомбиниpуют. Во-втоpых, введение избыточных электpонов нарушает электpонейтpальность области, примыкающей к поверхности полупpоводника, что ведет к образованию внутреннего электрического поля, смещающего дырки из глубинных областей к поверхности полупpоводника, в pезультате чего происходит частичная компенсация инжектированного отрицательного заpяда. Вpемя, в течение котоpого происходит этот процесс, называется временем диэлектрической релаксации. Оно составляет около 10-12с. Полной компенсации инжектированного заpяда произойти не может, так как в этом случае исчезнет внутреннее поле.

 

Таким образом в результате инжекции возрастает концентрация как неосновных, так и основных носителей заряда. На рис.1.8,б показано распределение концентрации электронов и дырок:

n(x) = np+  n(x); (1.17)

p(x) = pp+  p(x). (1.18)

 Поскольку концентрации np и pp отличаются на несколько порядков, то для совмещения графиков n(x) и p(x) средняя часть вертикальной оси удалена. При этом выполняется условие)  n(x)   p(x). В случае экстракции электронов из дырочного полупроводника (рис. 1.9,а) происходит уменьшение концентрации электронов в приповерхностной области и возникает диффузия электронов в направлении справа налево. При этом также возникает внутреннее электрическое поле, сдвигающее дырки вглубь полупроводника. Распределение концентрации электронов и дырок:

n(x) = np -  n(x); (1.19) p(x) = pp -  p(x) . (1.20)

принимает вид, показанный на рис. 1.9,б.

Время жизни неосновных носителей заряда

Неравновесное состояние существует до тех пор пока не прекращается внешнее воздействие на полупроводник. После прекращения внешнего воздействия полупроводник возвращается в равновесное состояние. Длительность этого переходного процесса определяется временем жизни неравновесных носителей заряда. Поскольку концентрация основных носителей заряда при внешнем воздействии изменяется незначительно, то можно ограничиться только рассмотрением времени жизни неосновных носителей заряда. Для дырочного полупроводника после прекращения инжекции в него электронов изменение неравновесной концентрации электронов обусловлено разностью скоростей рекомбинации и генерации, то есть :

d n(t) = - (Rn -Gn)dt , (1.21)

где:

- скорость рекомбинации электронов, определяемая полной концентрацией: n(t) =np+ n(t);  - скорость генерации электронов, определяемая равновесной концентрацией np.

Следовательно :

 . (1.22)

Разделяя переменные и интегрируя в пределах от t0 до t и от  n(t0) до  n(t), получаем:

 , (1.23)

то есть избыточная концентрация с течением времени уменьшается по экспоненциальному закону (рис. 1.10). Время, в течение которого избыточная концентрация уменьшается в eраз ( e  2,7) называется временем жизни неравновесных носителей. В электронном полупроводнике аналогичным образом изменяется избыточная концентрация дырок.

В ремя жизни электронов является величиной, обратной вероятности встречи электрона с дыркой, которая равна  · p, где  - коэффициент рекомбинации, определяемый структурой кристаллической решетки полупроводника, а время жизни дырки - величина, обратная вероятности встречи с электроном. Вероятность такой встречи практически незначительна. В реальных структурах рекомбинация происходит по схеме “зона - ловушка - зона”.

Ловушками называются разрешенные энергетические уровни, возникающие посередине запрещенной зоны за счет дефектов кристаллической структуры. При таком механизме рекомбинации электроны сначала захватываются ловушкой ( при этом рекомбинации дырки не происходит), а затем переходят в валентную зону (происходит рекомбинация дырки). (Рис. 1.11). В этом случае время жизни электронов является величиной , обратной вероятности захвата электрона ловушкой. При этом захват может быть осуществлен свободной ловушкой. Если M - концентрация ловушек, то M[1-P(Ei)] - концентрация свободных ловушек, где P(Ei) - вероятность нахождения электрона посередине запрещенной зоны, то есть в ловушке. Вероятность P(Ei) зависит то положения уровня Ферми. Следовательно:

 , (1.24)

соответственно рекомбинация дырок происходит через занятые ловушки, следовательно:

 . (1.25)

Уравнения (1.24) и (1.25 ) позволяют сделать вывод о причинах, влияющих на время жизни неравновесных носителей заряда.

  Во-первых, время жизни зависит от концентрации ловушек M. Чем больше дефектов в кристаллической структуре полупроводника, тем меньше время жизни.

Во-вторых, время жизни зависит от концентрации примесей. Чем больше содержится примесей, тем дальше от середины запрещенной зоны расположен уровень Ферми. Поэтому в электронном полупроводнике возрастает P(Ei) и соответственно уменьшается  p, а дырочном полупроводнике возрастает [1- P(Ei)] и соответственно уменьшается  n.

В-третьих, время жизни зависит от температуры. С повышением температуры уровни Ферми в электронном и дырочном полупроводниках сдвигаются к середине запрещенной зоны. Кроме того, графики P(E) приобретают более плавный изгиб. Поэтому уменьшается P(Ei) в электронном полупроводнике и уменьшается [1-P(Ei)] в дырочном полупроводнике. В результате чего с ростом температуры возрастает время жизни неравновесных носителей заряда.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]