Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен по минералогии 15.01.2012.docx
Скачиваний:
24
Добавлен:
21.04.2019
Размер:
193 Кб
Скачать

1. Методы определения хим. Состава.

Количественный химический анализ независимо от способа его проведения нужен для того, чтобы определить присутствующие в нем элементы и их количественные соотношения. Поэтому химический анализ должен быть полным, т.е. определены все присутствующие в нем элементы, и их содержание должно отвечать реально присутствующим в минерале. Количества присутствующих элементов обычно выражаются в весовых процентах, количество которых при полном анализе должно быть 100 %. Как правило, точность хороших анализов может колебаться от 99,5 до 100,5 %. Интерпретация результатов. Давая определение минерала, мы говорили о том, что для него характерен определенный химический состав. Этот состав можно выразить формулой, которая отражает как качественный состав элементов, так и их количественные соотношения в минерале. Формулы могут быть простыми и сложными в зависимости от числа присутствующих элементов и количественных соотношений, в которых эти элементы комбинируются в минерале. Основными данными для написания правильной формулы минерала служат результаты его химических анализов. Химический анализ указывает лишь на присутствие того или иного элемента и его содержание, но не дает сведений о связи элементов между собой в структуре минерала.В минералогии важно суметь рассчитать формулу минерала по результатам его химических анализов. Результаты химических анализов выражают в массовых (весовых) процентах.

2. Процессы окисления сульфидов в приповерхностных условиях

Сульфиды очень подвержены вторичным изменениям и в приповерхностных условиях в средах богатых водой и кислородом (т.е. выше уровня грунтовых вод, в зоне просачивания) большинство сульфидов легко окисляется. Основные факторы окисления это: кислород, бактерии и электрохимические реакции.

Например, реакция кислородного окисления халькопирита:

CuFeS2 (халькопирит) +4O2 → CuSO4 + FeSO4 (оба в растворе),

CuFeS2 (халькопирит) + CuSO4 →CuS (ковеллин) +FeSO4 (в растворе);

FeSO4→ Fe2(SO4)3→Fe3+ (лимонит) +SO42-.

Этими процессами можно объяснить образование ковеллина и лимонита за счет окисления халькопирита.

Электрохимические реакции обусловлены тем, что на контактах сульфидов разного состава возникает электродвижущая сила, способствующая выносу ионов серы и железа.

Мощным фактором окисления сульфидов являются бактерии. Живые клетки являются окислителями, а в 1 мл растворов или в 1 г руды содержится порядка 108–109 клеток.

В результате совместного действия трех вышеуказанных факторов над первичными рудами образуются зоны (покровы) окисленных руд. Мощность зоны окисления бывает разной от долей до целых метров, а иногда и десятков метров. Зависит все от местных условий: климата, рельефа, гидрогеологических условий, трещиноватости руд, их строения и состава.

Зоны окисленных руд представляют собой яркие «шляпы» вторичных руд – железные охры, медные выцветы и пр. Их используют в качестве поисковых признаков первичных руд. Благодаря яркости, пестроте их окраски, они легко распознаются на местности, а по набору вторичных минералов можно предсказать состав первичных руд. Но главное, под зоной окисленных руд обычно имеются наиболее богатые участки. Они приурочены к зоне вторичного сульфидного обогащения, которые образуются в результате перемещения сюда по трещинам и порам рудного вещества и цементации этим веществом первичных сульфидов. Так образуются сплошные массивные наиболее богатые руды, состоящие из вещества различного происхождения: первичного и вторичного. Вверху, например, меднорудных месторождений образуется так называемая железная шляпа, представленная ячеистым лимонитом. в железной шляпе встречаются промышленные концентрации золота, которое скопилось после высвобождения золотин из сульфидов при их разложении. Ниже идет зона окисления, верхняя часть которой состоит из ноздреватого лимонита, в пустотах встречается зеленый малахит, ярко синий азурит, белоснежный ангидрит, серый прозрачный церуссит, небесно-голубой аурихальцит, зеленоватый смитсонит, голубовато-зеленая хризоколла и т.д. В средней зоне окисления – зоне вторичного обогащения сосредоточены массивные медные руды (борнит, халькозин, ковеллин). Самая нижняя зона окисленных руд представлена пиритом, халькопиритом, галенитом, сфалеритом, т. е. свинцовыми и цинковыми рудами.

Билет № 10