Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиологи Экз 2.doc
Скачиваний:
4
Добавлен:
06.07.2019
Размер:
712.19 Кб
Скачать

Специфические и неспецифические соматосенсорные системы: пути и принципы переработки информации.

Для осознания действия внешних раздражителей необходимо участие активации специфической сенсорной системы и активации неспецифической системы – РФ.

Информация о физических параметрах воспринимаемого объекта передается по специфической сенсорной системе.

Активация неспецифической сенсорной системы определяет уровень бодрствования.

Эмоциональная окраска восприятия зависит от активности лимбической системы, в которую поступают сенсорные сигналы по нескольким параллельным путям.

Проводящие пути коркового направления для проприоцептивной информации,  или бульботаламические пути (тракт) - это группа проприоцептивных путей, проводящих информацию от сенсорных рецепторов опорно-двигательной системы (проприорецепторов), к нейронам постцентральной извилины КГМ.

Эти проводящие пути относятся к специфическим соматосенсорным проводящим путям, или то же что лемнисковым соматосенсорным проводящим путям, которые являются одной из 2 главных взаимодействующих частей соматосенсорных проводящих путей в целом.  

Соматосенсорные пути разделяют на две группы:

1) специфические соматосенсорные проводящие пути (лемнисковая система)

2) неспецифические соматосенсорные проводящие пути (экстралемнисковая система).

 Специфические соматосенсорные проводящие пути имеют следующие характерные морфологические и функциональные особенности:

-Эти пути восходят главным образом по задним канатикам белого вещества спинного мозга и медиальной петле среднего мозга, через специфические ядра таламуса к соматосенсорной коре. Это зоны коры SI (в постцентральной извилине) и SII (на верхней стенке латеральной борозды, отделяющей теменную долю от затылочной доли больших полушарий).

-Специфические соматосенсорные пути - это система с немногочисленными специализированными входами и выходами.

-Они передают информацию одной модальности.

-Передача информации осуществляется с высокой точностью, с высоким быстродействием к специфическим нервным центрам разных уровней иерархии нервных центров.  

Специфическая и неспецифическая соматосенсорные системы и их проводящие пути взаимодействуют, то есть функционируют согласованно.

В специфических (лемнисковых) соматосенсорных проводящих путях выделяют три главных группы:

-спинно-таламические проводящие пути передних и боковых канатиков спинного мозга,

-медиальные проводящие пути задних канатиков СМ

-спинно-цервикальные пути.

 Группу спинно-таламических путей иногда называют нео-спинно-таламическими путями.

Они включают передний спинно-таламический тракт и латеральный спинно-таламический тракт.

Медиальная группа проводящих путей задних канатиков спинного мозга включает тонкий пучок (Голля) и клиновидный пучок (Бурдаха).

Спинно-цервикальные пути иначе называемые спинно-шейно-таламическими путями включают спинно-шейный тракт (латеральный тракт Морина).

Совокупность нейронов постцентральной извилины составляют высшее звено в иерархии регуляторов опорно-двигательной системы.  

16

Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение внешнего мира, включает в себя роговицу (диаметр роговицы – ок. 12 мм, средний радиус кривизны – 8 мм), камерную влагу – жидкости передней и задней камер глаза (Периферия передней камеры глаза, т.наз. угол передней камеры (область радужно-роговичного угла передней камеры), имеет важное значение в циркуляции внутриглазной жидкости), хрусталик, а также стекловидное тело, позади которого лежит сетчатка, воспринимающая свет.

Аккомодационный аппарат

Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре — зрачком — и ресничное тело с ресничным пояском хрусталика.

Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. Так же в фокусировке изображения принимает участие и сам глаз в целом. Если фокус находится за пределами сетчатки - глаз (за счёт глазодвигательных мышц) немного вытягивается (чтобы видеть вблизи). И наоборот округляется, при рассматривании далёких предметов.

Зрачок представляет собой отверстие переменного размера в радужке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света.

17

Сетчатка глаза - это сложное переплетение нервных клеток и нервных волокон, соединяющих нервные клетки между собой и связывающих глаз с корой головного мозга.

Основными светочувствительными элементами (рецепторами) сетчатки являются два вида клеток:

палочки (высота 30 мкм, толщина 2 мкм); колбочки (высота 10 мкм, толщина 6-7 мкм).

Палочки и колбочки различаются по своим функциям: палочки обладают большей чувствительностью, но не различают цветов и являются аппаратом сумеречного зрения (зрения при слабом освещении); колбочки чувствительны к цветам, но зато менее чувствительны к свету и поэтому являются аппаратом дневного зрения.

Всего в глазу располагается около 130 миллионов палочек и 7 миллионов колбочек. Распределение рецепторов на сетчатке неравномерно: в области желтого пятна преобладают колбочки, а палочек очень мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается и остаются одни только палочки.

На сетчатке имеется особая область, лежащая не на оптической оси, а немного в стороне от нее, ближе к височной части головы, называемая желтым пятном из-за своего цвета. Эта часть сетчатки имеет в середине небольшое центральное углубление - центральную ямку.

По направлению к этому углублению толщина сетчатки в желтом пятне уменьшается, исчезают почти все промежуточные ее слои и остаются практически только палочки и колбочки с их нервными окончаниями. В самой ямке отсутствуют и палочки, так что в ней все дно выстлано только колбочками. Диаметр желтого пятна составляет около 1 мм, а соответствующее ему поле зрения глаза - б-8°. Диаметр же центральной ямки равен примерно 0,4 мм, а поле зрения составляет около 1°.

В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне пределов желтого пятна одно волокно зрительного нерва всегда обслуживает целые группы колбочек или палочек. По этой причине только в области ямки и желтого пятна глаз может различать тонкие детали, в остальных местах сетчатки целые группы элементов, занимающих сравнительно большую площадь, одновременно передают свое раздражение одному нервному волокну, и воспринимаемая сознанием картина становится грубой, лишенной деталей. Всякое уклонение изображения в сторону от ямки влечет за собой уменьшение четкости изображения, а когда изображение сходит с желтого пятна, то различение мелких деталей предмета совершенно прекращается. Периферическая часть сетчатки служит в основном для ориентирования в пространстве.

В палочках находится особый пигмент - родопсин, который образуется в темноте и разрушается на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакциийодопсина.

19

Спинной мозг. Спинной мозг является низшим и наиболее древним отделом центральной нервной системы. Он имеет значительно меньшую самостоятельность у человека по сравнению с животными. У человека его вес по отношению к головному мозгу составляет всего 2% (у кошек—25%, у кролика—45%, у черепах— 120%).

Распределение функций входящих и выходящих волокон спинного мозга подчиняется определенному закону: все чувствительные (афферентные) волокна входят в спинной мозг через его задние корешки, а двигательные и вегетативные (эфферентные) выходят через передние корешки. В задних корешках волокон гораздо больше, чем в передних (их соотношение у человека примерно 5:1) т. е. при большом разнообразии поступающей информации организм использует незначительное количество исполнительных приборов Основную часть волокон в спинномозговых корешках составляют мякотные волокна. По задним корешкам в спинной мозг поступают импульсы от рецепторов скелетных мышц, сухожилий, кожи, сосудов, внутренних органов. Передние корешки содержат волокна к скелетным мышцам и вегетативным ганглиям.

Задние корешки образованы волокнами одного из отростков афферентных нейронов, тела которых расположены вне центральной нервной системы — в межпозвоночных ганглиях, а волокна другого отростка связаны с рецептором. Общее число афферентных волокон у человека достигает примерно 1 млн. Они различаются по диаметру. Наиболее толстые идут от рецепторов мышц и сухожилий, средние по толщине—от тактильныхрецепторов кожи, от части мышечных рецепторов и от рецепторов внутренних органов (мочевого пузыря, желудка, кишечника и др.), наиболее тонкие миелинизированные и немиелинизированные волокна—от болевых рецепторов и терморецепторов. Одна часть афферентных волокон заканчивается на нейронах спинного мозга, другая часть направляется к нейронам продолговатого мозга, образуя спинно-бульбарный путь.

Передние корешки состоят из отростков мотонейронов передних рогов спинного мозга и нейронов боковых рогов. Волокна первых направляются к скелетной мускулатуре, а волокна вторых переключаются в вегетативных ганглиях на другие нейроны и иннервируют внутренние органы.

В составе серого вещества спинного мозга человека насчитывают около 13,5 млн. нервных клеток. Из них двигательные клетки — мотонейроны — составляют всего 3%, а 97% представляют промежуточные клетки (вставочные, или интернейроны). Следует иметь в виду, что по функциональному механизму эти виды нейронов не различаются. Среди мотонейронов спинного мозга различают крупные клетки — альфа-мотонейроны и мелкие клетки — гамма-мотонейроны. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращение скелетных мышечных волокон. Тонкие волокна гамма-мотонейронов не вызывают сокращения мышц. Они подходят к проприорецепторам — мышечным веретенам и вызывают сокращение их внутренних (интрафузальных) мышечных волокон. При этом сокращении растягиваютсярецепторы веретен, повышается их чувствительность, усиливается поток афферентных импульсов от скелетных мышц к нервным центрам. Таким образом, альфа-мотонейроны вызывают двигательные акты, а гамма-мотонейроны регулируют чувствительность мышечных рецепторов, информирующих мозг о выполнении этих движений.

Группу альфа-мотонейронов, иннервирующих отдельную скелетную мышцу, называют ее моторным ядром. Ядра крупных скелетных мышц состоят из мотонейронов, расположенных в 2—3 сегментах спинного мозга. Отростки этих клеток выходят из спинного мозга в составе 2—3 передних корешков. Мелкие же мышцы иннервируются мотонейронами одного сегмента, волокна которого идут в составе одного переднего корешка.

Особое место в деятельности спинного мозга занимают его промежуточные нейроны, или интернейроны. Это в основном мелкие клетки, через которые осуществляются межнейронные взаимодействия в спинном мозгу и координация деятельности мотонейронов. К промежуточным нейронам относятся и тормозные клетки Рэншоу, с помощью которых осуществляются возвратное торможение альфа-мотонейронов и реципрокное торможение центров мышц-антагонистов.

Рефлексы спинного мозга можно подразделить на двигательные, осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов. Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет элементарные двигательные рефлексы — сгибательные и разгибательные, возникающие при раздражениирецепторов кожи или проприорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая их напряжение — мышечный тонус.

20

Мышечный тонус возникает в результате раздражения проприорецепторов мышц и сухожилий при их растяжении во время движения человека или при воздействии силы тяжести. Импульсы от проприорецепторов поступают к мотонейронам спинного мозга, а импульсы от мотонейронов направляются к мышцам, обеспечивая поддержание их тонуса. При разрушении нервных центров спинного мозга или при перерезке нервных волокон, идущих от мотонейронов к мышцам, исчезает тонус скелетных мышц. Участие спинного мозга в двигательной деятельности проявляется не только в поддержании тонуса, но и в организации элементарных двигательных актов и сложной координации деятельности различных мышц (например, согласованной деятельности мышц-антагонистов). Это возможно благодаря мощному развитию системы вставочных нейронов и их богатым взаимосвязям внутри спинного мозга.

Специальные мотонейроны иннервируют дыхательную мускулатуру — межреберные мышцы и диафрагму и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, железы внутренней секреции, пищеварительный тракт и др.) и осуществляют рефлексы, регулирующие их деятельность.

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга в спинной. Наиболее важными восходящими путями спинного мозга являются: 1) путь в продолговатый мозг—спинно-бульбарный; 2) в мозжечок—спинно-мозжечковый, несущие импульсы ог проприорецепторов мышц, суставов и сухожилий, частично от рецепторов кожи; 3) в промежуточный мозг—спинно-таламический путь (от тактильных, болевых и терморецепторов). По различным восходящим путям передаются в головной мозг сигналы от интерорецепторов внутренних органов

Для возникновения тонуса в мышцах достаточна уже рефлекторная деятельность спинного мозга. Однако тонкое перераспределение тонуса между различными мышцами, необходимое для протекания реакций целостного организма, осуществляется более высокими Этажами центральной нервной системы, а его произвольная регуляция — корой больших полушарий.

В наиболее простом случае появление тонуса обусловлено сокращением мышцы в ответ на раздражение проприорецепторов при ее растяжении. Такой рефлекс, осуществляемый спинным мозгом называется миотатическим рефлексом на растяжение. Если это растяжение длительно, то рефлекторное сокращение носит тоже длительный тонический характер. При растяжении мышцы возбуждаются чувствительные нервные окончания в мышечных веретенах. Импульсы от них направляются по толстым афферентным волокнам в передние рога спинного мозга, где непосредственно (без участия вставочных нейронов) передаются на альфа-мотонейроны и вызывают сокращение мышц. Такая же двухнейронная рефлекторная дуга лежит в основе аналогичного сухожильного рефлекса — сокращения мышцы при ударе по ее сухожилию. К сухожильным рефлексам относят рефлекс ахиллова сухожилия, коленный рефлекс и др.

В естественных условиях основным раздражителем рецепторов мышечных и сухожильных веретен является сила тяжести, растягивающая скелетные мышцы, особенно мышцы-разгибатели. Поражение спинного мозга приводит к исчезновению тонуса мышц.

Гамма-регуляция мышечного тонуса. Степень тонического напряжения мышцы зависит от частоты импульсов, посылаемых к ней тоническими альфа-мотонейронами. Частота разрядов альфа-мотонейронов, в свою очередь, регулируется импульсами от проприорецепторов той же самой мышцы. Получается замкнутое кольцо между мышцей и иннервирующими ее мотонейронами. Однако потоки импульсов в этом кольце могут регулироваться вышележащими этажами нервной системы с помощью гамма-мотонейронов спинного мозга (рис. 58). Разряд гамма-мотонейронов повышает чувствительность мышечных веретен. В результате увеличивается поток импульсов от рецепторов к альфа-мотонейронам и от альфа-мотонейронов к мышце. Тем самым повышается мышечный тонус.

21

Базальные ганглии, как и мозжечок, представляют другую вспомогательную двигательную систему, которая функционирует обычно не сама по себе, а в тесной связи с корой большого мозга и кортикоспинальной системой двигательного контроля. Действительно, большинство входящих сигналов базальные ганглии получают от коры большого мозга, а почти все выходящие из этих ганглиев сигналы возвращаются назад к коре.

На каждой стороне мозга эти ганглии состоят из хвостатого ядра, скорлупы, бледного шара, черного вещества и субталамического ядра. Они располагаются в основном латеральнее таламуса и вокруг него, занимая большую часть внутренних регионов обоих полушарий большого мозга. Видно также, что почти все двигательные и чувствительные нервные волокна, связывающие кору большого мозга и спинной мозг, проходят через пространство, лежащее между основными структурами базальных ганглиев, хвостатым ядром и скорлупой. Это пространство называют внутренней капсулой мозга. Для данного обсуждения важно наличие тесной связи между базальными ганглиями и кортикоспинальной системой двигательного контроля.

Одной из главных функций базальных ганглиев в двигательном контроле является их участие в регуляции выполнения сложных двигательных программ вместе с кортикоспинальной системой, например в движении при написании букв. При серьезном поражении базальных ганглиев корковая система двигательного контроля больше не может обеспечить эти движения. Вместо этого почерк человека становится грубым, как будто он впервые учится писать.

К другим сложным двигательным актам, требующим участия базальных ганглиев, относят резание ножницами, забивание гвоздей молотком, броски баскетбольного мяча через обруч, ведение мяча в футболе, бросание мяча в бейсболе, движения лопатой при копании земли, большинство процессов вокализации, управляемые движения глаз и практически любое из наших точных движений, в большинстве случаев выполняемых бессознательно.

Нарушения двигательных функций при поражении контура скорлупы: атетоз, гемибаллизм и хорея. Как участвует контур скорлупы в обеспечении выполнения сложных двигательных актов? Ответ не ясен. Однако когда часть контура поражается или блокируется, некоторые движения значительно нарушаются. Например, поражения бледного шара обычно ведут к спонтанным и часто постоянным волнообразным движениям кисти, руки, шеи или лица. Такие движения называют атетозом.

Поражение субталамического ядра часто ведет к появлению размашистых движений всей конечности. Это состояние называют гемибаллизмом. Множественные мелкие поражения в скорлупе ведут к появлению быстрых подергиваний в кистях, лице и других частях тела, что называют хореей.

Поражения черного вещества ведут к распространенному и чрезвычайно тяжелому заболеванию с характерными для него ригидностью, акинезией и тремором. Это заболевание известно как болезнь Паркинсона и подробно будет обсуждаться далее.

22

Мозжечок. Это — надсегментарное образование, не имеющее непосредственной связи с исполнительными аппаратами. Мозжечок входит в состав экстрапирамидной системы. Он состоит из двух полушарий и червя, находящегося между ними. Наружные поверхности полушарий покрыты серым веществом — корой мозжечка, а скопления серого вещества в белом веществе образуют ядра мозжечка.

Мозжечок получает импульсы от рецепторов кожи, мышц и сухожилий через спинно-мозжечковые пути и через ядра продолговатого мозга (от спинно-бульбарного пути). Из продолговатого мозга в мозжечок поступают также вестибулярные влияния, а из среднего мозга—зрительные и слуховые. Корково-мосто-мозжечковый путь связывает мозжечок с корой больших полушарий. В коре мозжечка представительство различных периферическихрецепторов имеет соматотопическую организацию. Кроме того, наблюдается упорядоченность связей этих зон с соответствующими воспринимающими областями коры. Так, зрительная зона мозжечка связана со зрительной зоной коры, представительство каждой группы мышц в мозжечке — с представительством одноименных мышц в коре и т. д. Такое соответствие облегчает совместную деятельность мозжечка и коры в управлении различными функциями организма.

Эфферентные импульсы от мозжечка поступают к красным ядрам ретикулярной формации, продолговатому мозгу, таламусу, коре и подкорковым ядрам.

Мозжечок участвует в регуляции двигательной деятельности. Электрические раздражения поверхности мозжечка вызывают движения глаз, головы и конечностей, которые отличаются от корковых моторных эффектов тоническим характером и большой длительностью. Мозжечок регулирует изменение и перераспределение тонуса скелетных мышц, что необходимо для организации нормальной позы и двигательных актов.

Функции мозжечка изучались в клинике при его поражениях у человека, а также у животных путем удаления (экстирпации мозжечка) (Л. Лючиани, Л. А. Орбели). В результате выпадения функций мозжечка возникают двигательные расстройства: атония— резкое падение и неправильное распределение тонуса мышц, астазия — невозможность сохранения неподвижного положения, непрерывные качательные движения, дрожание головы, туловища и конечностей, астения — повышенная утомляемость мышц, атаксия — нарушение координированных движений, походки и др.

Мозжечок оказывает влияние также на ряд вегетативных функций, например желудочно-кишечного тракта, на уровень кровяного давления, на состав крови.

Таким образом, в мозжечке происходит интеграция самых различных сенсорных влияний, в первую очередь проприоцептивных и вестибулярных. Мозжечок даже ранее считали центром равновесия и регуляции мышечного тонуса. Однако его функции, как оказалось, гораздо обширнее—охватывают также регуляцию деятельности вегетативных органов. Деятельность мозжечка протекает в непосредственной связи с корой больших полушарий, под ее контролем.

23

Вегетативная нервная система. Регуляция деятельности внутренних органов осуществляется нервной системой через специальный ее отдел — вегетативную нервную систему.

Особенности строения вегетативной нервной системы. Все функции организма можно разделить на соматические, или анимальные (от лат. animal— животное), связанные с деятельностью скелетных мышц, — организация позы и перемещение в пространстве, и вегетативные (от лат. vegetativus — растительный), связанные с деятельностью внутренних органов,—процессы дыхания, кровообращения, пищеварения, выделения, обмена веществ, роста и размножения. Деление это условно, так как вегетативные процессы присущи также и двигательному аппарату (например, обмен веществ и др.); двигательная деятельность неразрывно связана с изменением дыхания, кровообращения и пр.

Раздражения различных рецепторов тела и рефлекторные ответы нервных центров могут вызывать изменения как соматических, так и вегетативных функций, т. е. афферентные и центральные отделы этих рефлекторных дуг общие. Различны лишь их эфферентные отделы.

Совокупность эфферентных нервных клеток спинного и головного мозга, а также клеток особых узлов (ганглиев), иннервирующих внутренние органы, называют вегетативной нервной системой. Следовательно, эта система представляет собой эфферентный отдел нервной системы, через который центральная нервная система управляет деятельностью внутренних органов.

Характерной особенностью эфферентных путей, входящих в рефлекторные дуги вегетативных рефлексов, является их двухнейронное строение. От тела первого эфферентного нейрона, который находится в центральной нервной системе (в спинном, продолговатом или среднем мозгу), отходит длинный аксон, образующий предузловое (или преганглионарное) волокно. В вегетативных ганглиях — скоплениях клеточных тел вне центральной нервной системы—возбуждение переключается на второй эфферентный нейрон, от которого отходит послеузловое (или постганглионарное) волокно к иннервируемому органу

Вегетативная нервная система подразделяется на 2 отдела — симпатический и парасимпатический. Эфферентные пути симпатической нервной системы начинаются в грудном и поясничном отделах спинного мозга от нейронов его боковых рогов. Передача возбуждения с предузловых симпатических волокон на послеузловые происходит в ганглиях пограничных симпатических стволов с участием медиатора ацетилхолина, а передача возбуждения с послеузловых волокон на иннервируемые органы — с участием медиатора адреналина, или симпатина. Эфферентные пути парасимпатической нервной системы начинаются в головном мозгу от некоторых ядер среднего и продолговатого мозга и отнейронов крестцового отдела спинного мозга. Парасимпатические ганглии расположены непосредственной близости от иннервируемых органов или внутри их. Проведение возбуждения в синапсах парасимпатического пути происходит с участием медиатора ацетилхолина.

Роль вегетативной нервной системы в организме. Вегетативная нервная система, регулируя деятельность внутренних органов, повышая обмен веществ скелетных мышц, улучшая их кровоснабжение, повышая функциональное состояние нервных Центров и т. д., способствует осуществлению функций соматической и нервной системы, которая обеспечивает активную приспособительную деятельность организма во внешней среде (прием внешних сигналов, их обработку, двигательную деятельность, направленную на защиту организма, на поиски пищи, у человека—двигательные акты, связанные с бытовой, трудовой, спортивной деятельностью и пр.). Передача нервных влияний в соматической нервной системе осуществляется с большой скоростью (толстые соматические волокла имеют высокую возбудимость и скорость проведения 50— 140 м/сек). Соматические воздействия на отдельные части двигательного аппарата характеризуются высокой избирательностью. вегетативная нервная система участвует в этих приспособительных реакциях организма, особенно при чрезвычайных напряжениях (стресс).

24

Ацетилхолин является первым биологически активным веществом, которое было идентифицировано как нейромедиатор. Он высвобождается в окончаниях холинергических парасимпатических и симпатических волокон. Процесс освобождения медиатора является кальцийзависимым. Инактивация медиатора происходит с помощью фермента ацетилхолинэстеразы.  Ацетилхолин оказывает свое воздействие на органы и ткани посредством специфических холинорецепторов. Действие ацетилхолина на пост-синаптическую мембрану постганглионарных нейронов может быть воспроизведено никотином, а действие ацетилхолина на исполнительные органы — мускарином (токсин гриба мухомора). На этом основании холинорецепторы разделили на Н-холинорецепторы (никотиновые) и М-холинорецепторы (мускариновые). Однако и эти виды холинорецепторов не однородны. Н-холинорецепторы в периферических отделах вегетативной нервной системы расположены в ганглионарных синапсах симпатического и парасимпатического отделов, в каротидных клубочках и хромаффинных клетках мозгового слоя надпочечников. Возбуждение этих холинорецепторов сопровождается соответственно облегчением проведения возбуждения через ганглии, что ведет к повышению тонуса симпатического и парасимпатического отделов вегетативной нервной системы; повышением рефлекторного возбуждения дыхательного центра, в результате чего углубляется дыхание; повышением секреции адреналина.  М-холинорецепторы также подразделяются на несколько типов: М,-, М,2- и М3-холинорецепторы. Но все они блокируются атропином. М-холипорецепторы находятся на обкладочных клетках желудочных желез и их возбуждение приводит к усилению секреции соляной кислоты. М2-холинорецепторы располагаются в проводящей системе сердца. Возбуждение этих рецепторов приводит к понижению концентрации цАМФ, открытию калиевых каналов и увеличению тока К+, что приводит к гиперполяризации и тормозным эффектам: брадикардии, замедлению атрио-вентрикулярной проводимости, ослаблению сокращений сердца, понижению потребности сердечной мышцы в кислороде.  Возбуждение этих рецепторов в гладких мышцах бронхов, кишечника, мочевого пузыря, матки, круговой и цилиарной мышцах глаза приводит соответственно к бронхоспазму, усилению перистальтики кишечника, желудка при расслаблении сфинктеров, сокращению мочевого пузыря, матки, сужению зрачка и спазму аккомодации. Возбуждение М3-холинорецепторов экзокринных желез вызывает слезотечение, усиление потоотделения, выделение обильной бедной белком слюны, бронхорею, выделение желудочного сока. Имеются также внесинаптические М3-холинорецепто-ры, которые располагаются в эндотелии сосудов, где они ассоциированы с сосудорасширяющим фактором — окисью азота. Их возбуждение приводит к расширению сосудов и понижению артериального давления. Норадреналин обеспечивает химическую передачу нервного импульса в норадренергических синапсах вегетативной нервной системы. Норадреналин относится к катехоламинам. Он синтезируется из аминокислоты тирозина в области пресинаптической мембраны адренергического синапса. В хромаффинных клетках надпочечников этот процесс продолжается, в результате чего образуется адреналин (тирозин-ДОФА-дофамин-норадреналин-ад-реналин). Инактивация норадреналина происходит с помощью ферментов катехол-о-метилтрасферазы (КОМТ) и моноаминок-сидазы (МАО), а также путем обратного захвата нервными окончаниями с последующим повторным использованием. Частично порадреналин диффундирует в кровеносные сосуды. 

26

ПРИВЫКАНИЕ (ИЛИ ГАБИТУАЦИЯ)

Это фоpма pеактивного научения, она встpечается часто и сpавнительно пpоста по механизму обpазования. Так, напpимеp, мы не обpащаем внимания на обычный гоpодской шум за окнами кваpтиpы или учебной аудитоpии. Люди, поселившиеся вблизи тpамвайного пеpекpестка, только в пеpвое вpемя испытывают неудобство от такого соседства. Электpоэнцефалогpафическое исследование мозга показало,  что на звук гудка в латеpальных отделах больших полушаpий мозга увеличивается доля низкоамплитудных и высокочастотных компонентов электpоэнцефалогpаммы,  в медиальных и базальных стpуктуpах мозга выявляется гипеpсинхpонизация ПД,  а также возникают дpугие пpоявления оpиентиpовочного pефлекса: увеличивается пpиток кpови к голове за счет оттока от кончиков пальцев, меняется электpическое сопpотивление кожи, частота сокpащений сеpдца и хаpактеp дыхания.  Но с каждым новым повтоpением гудка все эти пpоявления уменьшаются и постепенно исчезают.

Исследование pеакции пpивыкания в малой системе нейpонов калифоpнийской аплизии позволило обнаpужить клеточные механизмы этой фоpмы научения. Моллюск способен pефлектоpно втягивать жабpу с помощью сифона - мясистого жолоба мантийного выступа, покpывающего жабpу. В неспокойной воде этот pефлекс вызывается пpи pаздpажении чувствительных окончаний в коже сифона взвешенными в воде твеpдыми частицами, в экспеpименте его можно вызвать пpикосновением к коже сифона (тактильное pаздpажение). Если pаздpажающий стимул оказывается безвpедным (напpимеp, напpавленная на жабpу стpуя чистой воды), то защитная pеакция постепенно уменьшается и затем исчезает.

У аплизии этот pефлекс контpолиpует всего один ганглий, содеpжащий 24 сенсоpных нейpона, обpазующих синапсы с 4 мотонейpонами. Был подобpан стимул,  котоpый вызывал одиночный ПД в сенсоpном нейpоне. Пpи пеpвом pаздpажении появлялся кpупный ВПСП (Рис. 7.1) в мотонейpоне, а пpи последующих pаздpажениях его величина пpогpессивно уменьшалась вплоть до полного исчезновения. Пpичиной этому, как оказалось, было уменьшение тока ионов кальция в пpесинаптическое окончание. В связи с этим, как это обычно бывает в синапсах, снизилось количество выделяемого медиатоpа. Постсинаптические pецептоpы пpи этом не изменяли чувствительности к медиатоpу. Состояние пpивыкания у аплизии сохpанялось на пpотяжении нескольких часов; это наблюдение демонстpиpует возможность запоминания, основанную на депpессии кальциевого тока чеpез пpесинаптическое окончание.

СЕНСИТИЗАЦИЯ (СЕНСИБИЛИЗАЦИЯ)

Эта фоpма научения пpотивоположна пpивыканию по pезультату, она состоит в усилении ответа на обычный, pанее нейтpальный pаздpажитель. Так может pеагиpовать человек на назойливое жужжание мухи, залетевшей в его комнату,  или на меpно падающие из неплотно закpывающегося кpана капли воды.  У аплизий было обнаpужено длительно сохpаняющееся усиление ответа на pаздpажитель в pезультате однокpатного действия ноцицептивного (болевого) стимула: после укола булавкой в голову (ноцицептивный стимул) втягивание жабpы в ответ на тактильное pаздpажение кожи сифона pезко усилилось, пpичем такое pеагиpование сохpанялось довольно долго. Оказалось, что возбуждаемый уколом нейpон имеет аксо-аксональный синапс с сенсоpным нейpоном, pеагиpующим на тактильное pаздpажение (Рис. 7.2). В ответ на укол булавкой пеpвый нейpон выделяет в качестве медиатоpа сеpотонин, котоpый, используя в качестве втоpичного посpедника цАМФ, повышает активность пpотеинкиназы в пpесинаптическом окончании втоpого нейpона. Пpотеинкиназа фосфоpилиpует белки мембpанных каналов для ионов кальция, а вследствие этого с каждым пpиходящим к пpесинаптическому окончанию ПД в нем pастет концентpация кальция и, соответственно, выход медиатоpа.

Следует отметить, что пpи сенситизации не возникает ассоциация между pаздpажителями, как пpи обpазовании условного pефлекса, поскольку возникновение сенситизации не зависит от того, как именно сочетаются во вpемени тактильное pаздpажение и болевой стимул.

Общие пpавила обpазования условных pефлексов сводятся к следующему.

1)    Индиффеpентный pаздpажитель должен появляться чуть pаньше безусловного. Если включать звонок или лампочку после коpмления, то pефлекс не выpаботается.  Если индиффеpентный pаздpажитель будет использован за полчаса до коpмления,  а не за несколько секунд до него, то тоже ничего не получится.

2)    Индиффеpентный pаздpажитель должен быть слабее безусловного. Мощный пpожектоp вместо лампочки или пожаpная сиpена вместо звонка могут только напугать животное, тогда как лампочка или звонок поначалу вызывают оpиентиpовочный pефлекс («что такое?»), котоpый обычно скоpо исчезает вследствие pеакции пpивыкания. После этого pаздpажитель становится безpазличным или индиффеpентным. Сила безусловного pаздpажителя может опpеделяться, напpимеp,  чувством голода и поэтому пpи сытом желудке пищеваpительные условные pефлексы обpазуются плохо.

3)    Надо, чтобы дpугие pаздpажители не мешали выpабатывать условные pефлексы.  Не случайно по pаспоpяжению Павлова в его институте для пpоведения опытов были постpоены специальные «башни молчания», поскольку внешние pаздpажители (напpимеp, шум или пpиход постоpоннего человека) способны помешать пpоявлению уже выpаботанных pефлексов и затоpмозить обpазование новых.  Условные pефлексы можно выpаботать не только пpи пищевом, но и пpи дpугих видах подкpепления, напpимеp, пpи болевом. Так, если включать звонок незадолго до болевого pаздpажения лапы собаки электpическим током, она вскоpе начнет сгибать эту лапу пpи одном лишь включении звонка, котоpый становится условным pаздpажителем.

Опеpантное поведение (лат. operatio - действие) фоpмиpуется пpи научении методом пpоб и ошибок. Пpи появлении потpебности в пище, воде, избавлении от непpиятных ощущений и т. д. возникает спонтанная двигательная активность,  котоpую часто опpеделяют теpмином дpайв (англ. drive - двигать). Всякие действия сопpовождаются какими-то последствиями, от хаpактеpа котоpых зависит,  будет ли субъект эти действия повтоpять или, напpотив, постаpается в дальнейшем их избегать: все зависит от получившегося pезультата. В конечном счете эмпиpически находится наиболее эффективный способ действий, он закpепляется в памяти и пpименяется впpедь пpи возникновении сходных обстоятельств.  Этот тип научения был откpыт амеpиканским исследователем Эдваpдом Тоpндайком (Thorndike E.) в опытах с использованием т. н. пpоблемных клеток, куда помещали голодных кошек. Чтобы добpаться до пищи, находящейся pядом с клеткой,  кошка должна была задеть запоpный кpючок и тогда двеpь клетки откpывалась.  Поначалу действия кошки были случайными, хаотичными и потому выбpаться из клетки ей удавалось не скоpо. Но, после того, как пpавильное pешение было однажды найдено, пpоводимое в клетке вpемя быстpо сокpащалось.

27

КРАТКОВРЕМЕННАЯ (ПЕРВИЧНАЯ) ПАМЯТЬ

Если пеpеданная от pецептоpов инфоpмация пpивлекла внимание пеpеpабатывающих стpуктуp мозга, то в течение пpиблизительно 20-30 секунд мозг будет обpабатывать и интеpпpетиpовать ее, pешая вопpос о том, насколько важна эта инфоpмация и стоит ли пеpедавать ее на долговpеменное хpанение. На самом деле (это ясно после ознакомления с исследованиями других авторов) как только структура возбуждена, начинается закрепление связей долговременным изменением синаптической проводимости. Но перед этим должно быть неспецифическая реакиця о важности, значимости воспринимаемого, которая усиливает возможноть синтеза нейропептидов в этой зоне мозга. Время установления долговременных связей примерно 30 минут. Если возбуждение будет прекращено раньше, долговременная память не образуется.

Таким обpазом, кpатковpеменная память пpедставляет собой вpеменное хpанилище инфоpмации. Емкость такой памяти огpаничена в сpеднем семью (±?) цифpами, семью буквами или семью названиями пpедметов. Это предел возможности охватить вниманием (фокусом сознания) такое вот количество независимых зон возбуждения из многих существующих. Когда бывает необходимо сохpанить инфоpмацию, включающую более семи элементов, мозг вынужден гpуппиpовать ее: пpедположим запомнить девять цифp, как тpи тpехзначных числа. Существуют и дpугие пpиемы, pасшиpяющие объем памяти; к ним, напpимеp, относится т. н.  мнемотехническая методика.

Кpатковpеменная память хаpактеpизуется быстpотой извлечения инфоpмации: только что увиденные или услышанные цифpы или слова можно воспpоизвести немедленно, не задумываясь. В отношении долговременной памати можно сказать тоже самое :) т.к. она представлена все теми же структурами, только с уже постоянными связями.

ДОЛГОВРЕМЕННАЯ (ВТОРИЧНАЯ) ПАМЯТЬ

Она похожа на аpхив, в котоpом выбpанные из кpатковpеменной памяти элементы подpазделяются на множество pубpик и сохpаняются более или менее длительное вpемя. Емкость и длительность хpанения в долговpеменной памяти в пpинципе не огpаничены. Чем чаще повтоpяется инфоpмация, чем важнее она,  тем надежнее становится долговpеменная память.  Исключительно важное значение для консолидации памяти имеют эмоции, под влиянием котоpых некотоpые события, наиболее счастливые или несчастливые,  могут запомниться на всю жизнь, даже, если они ни pазу больше не повтоpятся. Важна и мотивация к запоминанию: гоpаздо пpочнее фиксиpуется в памяти то,  что человек хочет знать, и несpавненно тpуднее сохpанять сведения, не пpедставляющие особого интеpеса.

28

В настоящее время большинство существующих гипотез относительно функционального назначения сна и отдельных его стадий можно свести к трем основным типам: 1) энергетическим, или компенсаторно-восстановительным, 2) информационным, 3) психодинамическим.           Согласно "энергетическим" теория во время сна происходит восстановление энергии, затраченной во время бодрствования. Информационные теории утверждают, что сон это результат уменьшения сенсорного потока к ретикулярной формации. Уменьшение информации влечет за собой включение тормозных структур. Имела место и такая точка зрения, что нуждаются в отдыхе не клетки, не ткани, не органы, а психические функции: восприятие, сознание, память. Воспринимаемая информация может «переполнить» мозг, поэтому ему необходимо отключиться от окружающего мира (что и является сущностью сна) и перейти на иной режим работы. Согласно "психодинамическим" теориям сна, кора мозга оказывает тормозное влияние сама на себя и на подкорковые структуры.           К психодинамическим теориям можно отнести гомеостатическую теорию сна. Под гомеостазом в этом случае понимается весь комплекс процессов и состояний, на котором основана оптимальная работа мозга. Согласно его теории, существует два типа бодрствования -- спокойное и напряженное.

Первая стадия является переходной от состояния бодрствования ко сну, что сопровождается уменьшением альфа-активности и появлением низкоамплитудных медленных тета- и дельта-волн. Длительность первой стадии обычно не больше 10-15 мин. В конце этой стадии могут появляться короткие вспышки так называемых сонных веретен, хорошо видимых на фоне медленноволновой активности. Однако пока веретена сна не достигнут длительности 0,5 секунд, этот период считается первой стадией сна. В поведении эта стадия соответствует периоду дремоты с полусонными мечтаниями, она может быть связана с рождением интуитивных идей, способствующих успешности решения той или иной проблемы.   

 Вторая стадия занимает чуть меньше половины всего времени ночного сна. Эта стадия получила название стадии "сонных веретен", т.к. наиболее яркой ее чертой является наличие в ЭЭГ веретенообразной ритмической активности с частотой колебания 12-16 Гц. Длительность этих "веретен", хорошо выделяющихся из фоновой высокоамплитудной ЭЭГ со смешанной частотой колебаний, составляет от 0,2 до 0,5 секунд.           Третья стадия характеризуется всеми чертами второй стадии, к которым добавляется наличие в ЭЭГ медленных дельта колебаний с частотой 2 Гц и менее, занимающих от 20 до 50% эпохи записи. Этот переходный период длится всего несколько минут.           Четвертая стадия характеризуется преобладанием в ЭЭГ медленных дельта колебаний с частотой 2 Гц и менее, занимающих более 50% времени записи ночного сна. Третья и четвертые стадии обычно объединяют под названием дельта-сна. Глубокие стадии дельта-сна более выражены в начале и постепенно уменьшаются к концу сна. В этой стадии разбудить человека достаточно трудно. Именно в это время возникают около 80% сновидений, и именно в этой стадии возможны приступы лунатизма и ночные кошмары, однако человек почти ничего из этого не помнит. Первые четыре стадии сна в норме занимают 75-80% всего периода сна.

Пятая стадия сна. Пятая стадия сна имеет ряд названий: стадия "быстрых движений глаз" или сокращенно БДГ, "быстрый сон", "парадоксальный сон". Во время этой стадии человек находится в полной неподвижности вследствие резкого падения мышечного тонуса, и лишь глазные яблоки под сомкнутыми веками совершают быстрые движения с частотой 60-70 раз в секунду. Количество таких движений может колебаться от 5 до 50. Причем была обнаружена отчетливая связь между быстрыми движениями глаз и сновидениями. Так, у здоровых людей этих движений больше, чем у больных с нарушением сна. Характерно, что слепым от рождения людям снятся только звуки и ощущения. Глаза их при этом

неподвижны.

30

Блоки мозга Блоки мозга структурнофункциональная модель мозговой локализации высших психических функций человека, которую разработал А.Р.Лурия . Каждая высшая психическая функция выполняется за счет работы трех мозговых блоков. Первый блок блок регуляции уровня общей и избирательной активации мозга образован неспецифическими структурами ретикулярной формации ствола мозга, структурами среднего мозга, диэнцефальных отделов ствола, лимбической системы, медиобазальными отделами коры лобных и височных долей мозга. Второй блок блок приема, переработки и хранения модальноспецифической информации образован основными анализаторными системами (зрительной, слуховой, кожнокинестезической), корковые зоны которых расположены в задних отделах больших полушарий. Третий блок блок программирования, регуляции и контроля за протеканием психической функции, обеспечивающий формирование мотивов деятельности и контроль за результатами деятельности посредством большого числа двусторонних связей с корковыми и подкорковыми структурами, образован моторными, премоторными и префронтальными отделами коры больших полушарий.

 Экстраверты легки в общении, у них высокий уровень агрессивности, имеют тенденцию к лидерству, любят быть в центре внимания, легко завязывают контакты, импульсивны, открыты, контактны, среди контактов могут быть и полезные; судят о людях по внешности, не заглядывают внутрь; холерики, сангвиники. Интроверты направлены на мир собственных переживаний, мало контактны, молчаливы, с трудом заводят новые знакомства, не любят рисковать, переживают разрыв старых связей, нет вариантов проигрыша и выигрыша, высокий уровень тревожности и ригидности; флегматики, меланхолики. 

31

Гипоталамус— отдел промежуточного мозга, которому принадлежит ведущая роль в регуляции многих функций организма, и прежде всего постоянства внутренней среды, гипоталамус является высшим вегетативным центром, осуществляющим сложную интеграцию функций различных внутренних систем и их приспособление к целостной деятельности организма, играет существенную роль в поддержании оптимального уровня обмена веществ и энергии, в терморегуляции, в регуляции деятельности пищеварительной, сердечно-сосудистой, выделительной, дыхательной и эндокринной систем. Под контролем гипоталамус находятся такие железы внутренней секреции, как гипофиз, щитовидная железа, половые железы , поджелудочная железа, надпочечники и др.

Обширные связи гипоталамуса с другими структурами головного мозга способствуют генерализации возбуждений, возникающих в его клетках. Гипоталамус находится в непрерывных взаимодействиях с другими отделами подкорки и корой головного мозга. Именно это лежит в основе участия гипоталамуса в эмоциональной деятельности. Кора головного мозга может оказывать тормозящий эффект на функции гипоталамуса. Приобретенные корковые механизмы подавляют многие эмоции и первичные побуждения, формирующиеся с его участием. Поэтому декортикация нередко приводит к развитию реакции «мнимой ярости» (расширение зрачков, тахикардия, развитие внутричерепной гипертензии, усиление саливации и т.д.). Гипоталамус является одной из главных структур, участвующих в регуляции смены сна и бодрствования. Клиническими исследованиями установлено, что симптом летаргического сна при эпидемическом энцефалите обусловлен именно повреждением гипоталамуса. В поддержании состояния бодрствования решающую роль играет задняя область гипоталамуса. Обширное разрушение средней области гипоталамуса в эксперименте приводило к развитию длительного сна. Нарушение сна в виде нарколепсии объясняется поражением гипоталамуса и ростральной части ретикулярной формации среднего мозга. Гипоталамус играет важную роль в терморегуляции. Разрушение задних отделов гипоталамуса приводит к стойкому снижению температуры тела.

32

Клетки РФ различны по форме и величине, длине аксонов, расположены преимущественно диффузно, местами образуют скопления — ядра, которые обеспечивают интеграцию импульсов, поступающих от расположенных поблизости черепных ядер или проникающих сюда по коллатералям от проходящих через ствол афферентных и эфферентных проводящих путей. Среди связей ретикулярной формации ствола мозга важнейшими можно считать корково-ретикулярные, спинно-ретикулярные пути, связи между РФ ствола с образованиями промежуточного мозга и стриопаллидарной системой, мозжечково-рети-кулярные пути. Отростки клеток РФ формируют афферентные и эфферентные связи между содержащимися в покрышке ствола ядрами черепных нервов и проекционными проводящими путями, входящими в состав покрышки ствола. По коллатералям от проходящих через ствол мозга афферентным путям РФ получает «подзаряжающие» ее импульсы и выполняет при этом функции аккумулятора и генератора энергии.

В составе РФ имеются отдельные территории, получившие в процессе эволюции элементы специализации — вазомоторный центр (депрессорные и прессорные его зоны), дыхательный центр (экспираторный и инспиратор-ный), рвотный центр. РФ содержит структуры, влияющие на соматопсихо-вегетативную интеграцию. РФ обеспечивает поддержание витальных рефлекторных функций — дыхания и сердечно-сосудистой деятельности, принимает участие в формировании таких сложных двигательных актов, как кашель, чиханье, жевание, рвота, сочетанная работа речедвигательного аппарата, обшей двигательной активности.

Многообразны восходящие и нисходящие влияния РФ на различные уровни нервной системы, которые «настраиваются» ею на выполнение той или иной конкретной функции. Обеспечивая поддержание определенного тонуса коры больших полушарий головного мозга, ретикулярная формация сама испытывает контролирующее влияние со стороны коры, получающей таким образом возможность регулировать активность собственной возбудимости, а также влиять на характер

воздействий ретикулярной формации на другие структуры мозга.

33

По химической природе гормоны разделены на три группы:

1) стероиды;

2) полипептиды и белки с наличием углеводного компонента и без него;

3) аминокислоты и их производные.

Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках. Генетический контроль осуществляется либо на уровне образования мРНК (матричной РНК) самого гормона или его предшественников (если гормон – полипептид), либо на уровне образования мРНК белков ферментов, которые контролируют различные этапы образования гормона (если он – микромолекула).

В зависимости от природы синтезируемого гормона существуют два типа генетического контроля гормонального биогенеза:

1) прямой (синтез в полисомах предшественников большинства белково-пептидных гормонов), схема биосинтеза: «гены – мРНК – прогормоны – гормоны»;

2) опосредованный (внерибосомальный синтез стероидов, производных аминокислот и небольших пептидов), схема:

На стадии превращения прогормона в гормон прямого синтеза часто подключается второй тип контроля.

Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы. Секреторный процесс осуществляется как в покое, так и в условиях стимуляции. Секреция гормона происходит импульсивно, отдельными дискретными порциями. Импульсивный характер гормональной секреции объясняется циклическим характером процессов биосинтеза, депонирования и транспорта гормона.

Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции. Выделяют три механизма секреции:

1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);

2) освобождение из белоксвязанной формы (секреция тропных гормонов);

3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).

Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему.

Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям. Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация.

В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5—10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник. Небольшая часть гормональных метаболитов выводится с потом и слюной.