Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиологи Экз 2.doc
Скачиваний:
4
Добавлен:
06.07.2019
Размер:
712.19 Кб
Скачать

Диастола желудочков

Протодиастола — период начала расслабления миокарда с падением давления ниже чем в выносящих сосудах, что приводит к закрытию полулунных клапанов.

Изоволюметрическое расслабление — аналогична фазе изволюметрического сокращения, но с точностью наоборот. Происходит удлинение мышечных волокон, но без изменения объема полости желудочков. Фаза заканчивается открытием предсердно-желудочковых (митрального и трехстворчатого) клапанов.

Период наполнения Быстрое наполнение — желудочки стремительно восстанавливают свою форму в расслабленном состоянии, что значительно снижает давление в их полости и засасывает кровь из предсердий. Медленное наполнение — желудочки практически полностью восстановили свою форму и кровь течет уже из-за градиента давления в полых венах, где оно выше на 2-3 мм рт. ст.

Систола предсердий Является завершающей фазой диастолы. При нормальной частоте сердечных сокращений вклад сокращения предсердий невелик (около 8 %), так как за относительно длинную диастолу кровь уже успевает наполнить желудочки. Однако, с увеличением частоты сокращений, в основном снижается длительность диастолы и вклад систолы предсердий в наполнение желудочков становится весьма существенным.

52

клапанный аппарат сердца: трехстворчатый; легочный; митральный; аортальный клапаны. Они открываются в нужный момент и закрываются, препятствуя кровотоку в обратном направлении.

Причины возникновения первого и второго тонов сердца. Самым простым объяснением возникновения тонов сердца является следующее: створки клапанов «схлопываются», и появляется вибрация или дрожание клапанов. Однако этот эффект незначительный, т.к. кровь, находящаяся между створками клапанов в момент их захлопывания, сглаживает их механическое взаимодействие и предотвращает возникновение громких звуков. Главной причиной появления звука является вибрация плотно натянутых клапанов сразу после их захлопывания, а также вибрация прилегающих участков стенки сердца и крупных сосудов, расположенных вблизи сердца.

Так, формирование первого тона можно описать следующим образом: сокращение желудочков первоначально вызывает обратный ток крови в предсердия к месту расположения А-В клапанов (митрального и трехстворчатого). Клапаны захлопываются и выгибаются в сторону предсердий, пока натяжение сухожильных нитей не остановит это движение. Эластическое напряжение сухожильных нитей и створок клапанов отражает поток крови и направляет его опять в сторону желудочков. При этом создается вибрация стенки желудочков, плотно закрытых клапанов, а также вибрация и турбулентные завихрения в крови. Вибрация распространяется по прилежащим тканям к грудной стенке, где с помощью стетоскопа эти колебания можно услышать как первый тон сердца.

Второй тон сердца возникает в результате захлопывания полулунных клапанов в конце систолы желудочков. Когда полулунные клапаны захлопываются, они под напором крови прогибаются в сторону же лудочков и натягиваются, а затем в силу эластической отдачи резко смещаются обратно в сторону артерий. Это вызывает кратковременное турбулентное движение крови между стенкой артерии и полулунными клапанами, а также между клапанами и стенкой желудочка. Возникшая вибрация распространяется затем вдоль артериального сосуда по окружающим тканям вплоть до грудной стенки, где можно выслушать второй тон сердца.

Высота и продолжительность первого и второго тонов сердца. Продолжительность каждого из тонов сердца едва превышает 0,10 сек: продолжительность первого составляет 0,14 сек, а второго — 0,11 сек. Продолжительность второго тона короче, т.к. полулунные клапаны имеют большее упругое натяжение, чем А В клапаны; их вибрация продолжается в течение короткого периода времени.

53

Градие́нт автомати́и убыва́ющий — Г. уменьшения частоты автоматически возникающих возбуждений различных участков сердца в направлении от основания сердца к его верхушке.

Важную роль в ритмичной работе сердца и в координации деятельности мускулатуры отдельных камер сердца играет так называемая проводящая система сердца. Хотя мускулатура предсердий отделена от мускулатуры желудочков фиброзными кольцами, однако между ними существует связь посредством проводящей системы, представляющей собой сложное нервно-мышечное образование. Мышечные волокна, входящие в ее состав (проводящие волокна), имеют особое строение: их клетки бедны миофиб-риллами и богаты саркоплазмой, поэтому светлее. Они видимы иногда невооруженным глазом в виде светло окрашенных ниточек и представляют менее дифференцированную часть первоначального синцития, хотя по величине превосходят обычные мышечные волокна сердца. В проводящей системе различают узлы и пучки.

Водитель сердечного ритма — участок сердечной мышцы, в котором генерируются импульсы, определяющие частоту сердечных сокращений. У человека в норме основным водителем ритма является синусно-предсердный узел

Экстрасчстолия. Внеочередное, преждевременное сокращение сердца под влиянием импульса, возникшего вне синусового узла. Ме сто расположения очага возбуждения может быть различным: пред сердия, предсердно-желудочковый узел, желудочки.

54

Как и в других возбудимых клетках возникновение мембранного потенциала кардиомиоцитов обусловлено избирательной проницаемостью их мембраны для ионов калия. Его величина у сократительных кардиомиоцитов составляет 80-90 мВ, а у клеток синоатриального узла 60-65 мВ. Возбуждение кардиомиоцитов проявляется генерацией потенциалов действия, которые имеют своеобразную форму. В них выделяются следующие фазы: 1. Фаза деполяризации 2. Фаза быстрой начальной реполяризации 3. Фаза замедленной реполяризации 4. Фаза быстрой конечной реполяризации.

Длительность ПД кардиомиоцитов составляет 200-400 мсек. Это во много раз больше, чем у нейронов или скелетных миоцитов.

Амплитуда ПД около 120 мВ. Фаза деполяризации связана с открыванием быстрых натриевых и кальциевых каналов мембраны, по которым эти ионы входят в цитоплазму. Фаза быстрой начальной реполяризации обусловлена инактивацией натриевых каналов и входом ионов хлора. Фаза замедленной инактивацией кальциевых каналов. Одновременно активируются калиевые каналы. Затем активируются все калиевые каналы и ионы калия выходят из кардиомиоцитов, развивается фаза быстрой конечной реполяризации.

Автоматия, т.е. генерация спонтанных ПД пейсмекерными клетками, обусловлена тем, что их мембранный потенциал не остается постоянным. В период диастолы в Р-клетках синоатриального узла происходит его медленное уменьшение. Это называется медленной диастолической деполяризацией МДД (рис). Когда ее величина достигает критического уровня, генерируется ПД, который по проводящей системе распространяется на все сердце. Возникает систола предсердий, а затем желудочков. Медленная диастолическая деполяризация связана с постепенным нарастанием натриевой проницаемости мембраны атипических кардиомиоцитов. Истинными пейсмекерами является лишь небольшая группа Р-клеток синоатриального узла. Остальные Р-клетки проводящей системы являются латентными водителями ритма. Пока спонтанные ПД поступают из синоатриального узла, латентные пейсмекеры подчиняются его ритму. Это называется усвоением ритма. Но как только проведение нарушается, в них начинают генерироваться собственные спонтанные ПД. Поэтому при некоторых заболеваниях возникает патологическая импульсация в клетках проводящей системы, миокарде предсердий и желудочков. Такие очаги автоматии называют эктопическими т.е. смещенными.

Сокращение кардиомиоцитов, как и других мышечных клеток является следствием генерации ПД. В них, как и скелетных миоцитах, имеется система трубочек саркоплазматического ретикулума, содержащих ионы кальция. При возникновении ПД эти ионы выходят из трубочек в саркоплазму. Начинается скольжение миофибрилл. Но в сокращении кардиомиоцитов принимают участие и ионы кальция, входящие в них в период генерации ПД. Они увеличивают длительность сокращения и обеспечивают пополнение запасов кальция в трубочках.

55

Совместное проявление гетеро- и гомеометрического типов регуляции сердечного выброса выражается в такой последовательности: а) увеличение венозного возврата к сердцу, обусловленное констрикцией артериальных и особенно венозных сосудов в системе циркуляции, ведет к увеличению сердечного выброса; б) последнее, наряду с ростом общего периферического сопротивления сосудов, повышает системное АД; в) это соответственно ведет к увеличению давления в аорте и, следовательно, кровотока в коронарных сосудах; г) гомеометрическая регуляция сердца, основанная на последнем механизме, обеспечивает преодоление сердечным выбросом возросшего сопротивления в аорте и поддержание сердечного выброса на повышенном уровне; д) увеличение сократительной функции сердца вызывает рефлекторное снижение периферического сопротивления сосудов (одновременно с проявлением рефлекторных влияний на периферические сосуды с барорецепторов синокаротидных зон), что способствует уменьшению работы сердца, затрачиваемой на обеспечение необходимого кровотока и давления в капиллярах.

57

 Рефлекторные реакции могут как тормозить (замедлять и ослаблять), так и возбуждать (ускорять и усиливать) сердечные сокращения. Рефлекторные изменения работы сердца возникают при раздра жении различных рецепторов. Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Эти рецепторы возбуждаются при изменении давления крови в сосудах или при воздействии гуморальных (хи мических) раздражителей. Участки, где сосредоточены такие рецеп­торы, получили название сосудистых рефлексогенных зон. Наиболее значительна роль рефлексогенных зон, расположенных в дуге аорты и в области разветвления сонной артерии. Здесь находятся окончания центростремительных нервов, раздражение которых рефлекторно вызывает урежение сердечных сокращений. Эти нервные окончания представляют собой барорецепторы. Естественным их раздражите лем служит растяжение сосудистой стенки при повышении давления в тех сосудах, где они расположены. Поток афферентных нервных импульсов от этих рецепторов повышает тонус ядер блуждающих нервов, что приводит к замедлению сердечных сокращений. Чем выше давление крови в сосудистой рефлексогенной зоне, тем чаще возникают афферентные импульсы. Рефлекторные изменения сердечной деятельности можно вызвать раздражением рецепторов и других кровеносных сосудов. Например, при повышении давления в легочной артерии замедляется работа сердца. Можно изменить сердечную деятельность и путем раздра жения рецепторов сосудов многих внутренних органов. Обнаружены также рецепторы в самом сердце: эндокарде, мио карде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов. В правом предсердии и в устьях полых вен имеются механорецепторы, реагирующие на растяжение (при повышении давления в по­лости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов к группе нейронов ретикулярной формации ство ла мозга, получивших название «сердечно-сосудистый центр». Аф ферентная стимуляция этих нейронов приводит к активации нейронов симпатического отдела автономной нервной системы и вызывает рефлек торное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов. Классический пример вагального рефлекса описал в 60-х годах прошлого века Гольц: легкое поколачивание по желудку и кишеч нику лягушки вызывает остановку или замедление сокращений сердца ( 7.16). Остановка сердца при ударе по передней брюшной стенке наблюдалась также у человека. Центростремительные пути этого рефлекса идут от желудка и кишечника по чревному нерву в спинной мозг и достигают ядер блуждающих нервов в продолго ватом мозге. Отсюда начинаются центробежные пути, образованные ветвями блуждающих нервов, идущими к сердцу. К числу вагальных рефлексов относится также глазосердечный рефлекс Ашнера (урежение сердцебиений на 10—20 в минуту при надавливании на глазные яблоки). Рефлекторное учащение и усиление сердечной деятельности на блюдаются при болевых раздражениях и эмоциональных состояниях: ярости, гневе, радости, а также при мышечной работе. Изменения сердечной деятельности при этом вызываются импульсами, посту­пающими к сердцу по симпатическим нервам, а также ослаблением тонуса ядер блуждающих нервов.

58

В сосудах различают скорость кровотока объемную и линейную.

Объемная скорость кровотока — количество крови, протекающее через поперечное сечение сосуда в единицу времени. Объемная скорость кровотока через сосуд прямо пропорциональна давлению крови в нем и обратно пропорциональна сопротивлению току крови в этом сосуде.

Линейная скорость кровотока отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на площадь сечения кровеносного сосуда. Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре сосуда линейная скорость максимальна, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

59

Давление крови в венах

Значительно ниже, чем в артериях, и может быть ниже атмосферного (в венах, расположенных в грудной полости, — во время вдоха; в венах черепа — при вертикальном положении тела); венозные сосуды имеют более тонкие стенки, и при физиологических изменениях внутрисосудистого давления меняется их емкость (особенно в начальном отделе венозной системы), во многих венах имеются клапаны, препятствующие обратному току крови. Давление в посткапиллярных венулах равно 10—20 мм рт.ст., в полых венах вблизи сердца оно колеблется в соответствии с фазами дыхания от +5 до —5 мм рт.ст. — следовательно, движущая сила (ΔР) составляет в венах около 10—20 мм рт.ст., что в 5—10 раз меньше движущей силы в артериальном русле.