Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Радиолокационное распознавание.doc
Скачиваний:
119
Добавлен:
13.08.2019
Размер:
7.28 Mб
Скачать

4.3.3. Динамические цифровые модели вторичного излучения

Используют общие принципы цифрового моделирования [114, 116, 117], сочетая моделирование электродинамических процессов, кинематики движения целей и их элементов, статистики помех и методов обработки принимаемых ко­лебаний [1]. Учитывают, в частности, кинематику и динамику: а) детермини­рованного и случайного движения целей; б) движения элементов целей (лопа­ток компрессоров и турбин, лопастей винтов) относительно связанных с целями систем координат; в) неодновременного облучения элементов целей моделиро­ванными сигналами [1]. В развитие раздела 4.2.1 можно использовать методы математического моделирования для получения ряда важных характеристик вто­ричного излучения и определения показателей качества алгоритмов распознава­ния.

Варианты построения динамических моделей

Показаны на рис. 4.3. Исходными данными в первом случае (рис. 4,3, а) служат длина волны, поляризация приемно-передающей антенны, параметры зондирующего сигнала, самих целей, а также составляющие их траекторий (ре­гулярные и случайные).

В соответствии с рис. 4.3,а следовало бы моделировать: а) прохождение сигнала от РЛС к цели (блок 2); б) регулярное и случайное движения цели (блок 3); в) вторичное излучение цели (блок 4); г) прохождение сигнала от цели к РЛС (блок 5); д) работу линейной части приемного устройства (блок 6).

В предположении линейности среды распространения, процесса вторичного излучения и обработки сигнала модели роение упрощается. Моделируется по­следовательно (рис. 4.3,6): а) регулярное и случайное движение цели (блок 2); б) расчет координат и амплитуд элементов матриц рассеяния блестящих точек цели (блок 3); в) работа линейной части приемника. В последнем блоке проводится согласно (4.3) расчет комплексной огибающей отраженного сигнала на выходе фильтра, согласованного с зондирующим сигналом. Описанная модель позволяет получать временные, частотные, поляризационные зависимости отраженных сигналов при различных значениях ширины спектра зондирующего сигнала.

Примеры моделирования приводились на рис. 1.2 - 1.8. 1.12 - 1.21.

Рис. 4.3. Варианты построения динамических и цифровых моделей вторичного излучения: без учета (а) и с учетом (б) линейности среды распространения процесса вторичного излучения и обработки сигнала

4.4. Методы определения показателей качества радиолокационного распознавания

Подразделяются на: а) натурные; б) методы физического моделирования; в) методы математического моделирования. К определяемым показателям каче­ства работы систем распознавания относят матрицы условных вероятностей рас­познавания, а также полные вероятности ошибок распознавания при равномер­ном появлении целей различных классов для различных ракурсов, дальностей (отношений сигнал/шум), условий помеховой обстановки и т.д. Сопоставлению могут подлежать также: а) реализуемый алфавит распознаваемых классов це­лей; б) коэффициент сокращения зоны распознавания по целям i-го класса относительно зоны обнаружения; в) временные характеристики распознавания (периодичность и число обращений к цели); г) пропускная способность канала распознавания (например, число распознаваемых целей в минуту); д) аппара­турные затраты и вычислительная сложность; е) степень влияния на другие ре­жимы работы РЛС; ж) помехозащищенность от активных и пассивных помех; з) имитостойкость; и) вопросы электромагнитной совместимости при использо­вании специальных видов сигналов.