Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электродинамика для МТФ.doc
Скачиваний:
31
Добавлен:
02.09.2019
Размер:
748.54 Кб
Скачать

2. Классификация магнетиков

μ < 1, не зависит от температуры

-

диамагнетики (вода, медь, графит, кварц) ,

μ > 1, зависит от температуры

-

парамагнетики (алюминий, платина, натрий) при T ≈ 300 K,

μ >> 1, зависит от температуры и нелинейно от поля B0

-

ферромагнетики (железо, никель, кобальт) для Fe, при T ≈ 300 K, при

3. Диамагнетики - по закону Фарадея-Ленца при внесении в магнитное поле любого вещества в атомах вещества возникают внутренние токи, создающие магнитное поле , направленное навстречу внешнему полю . В результате поле в веществе ослабляется. Если в веществе кроме этого отсутствуют другие магнитные эффекты, то оно будет диамагнетиком. Диамагнетизм проявляется у вещества, атомы которых не имеют собственного магнитного момента

4. Парамагнетизм проявляется у веществ, атомы которых имеют собственный магнитный момент. Магнитные моменты атомов выстраиваются по полю .

 

Тепловые колебания атомов нарушают ориентацию магнитных моментов.

5. Ферромагнетизм - объясняется самопроизвольным упорядочением спиновых магнитных моментов электронов в пределах областей спонтанного намагничивания (доменов). В пределах одного домена магнитные моменты электронов ориентированы в одном направлении. Магнитные моменты разных доменов в отсутствии внешнего поля ориентированы по разному, так, чтобы энергия созданного ими поля была минимальная:

а)

 

При включении внешнего поля расширяются за счет соседей те домены, которые ориентированы по полю:

б)

 

в)

 

Затем переориентируются оставшиеся домены, и ферромагнетик намагничивается до насыщения:

г)

 

В результате этого зависимость поля в ферромагнетике от переменного внешнего поля имеет вид петли гистерезиса, которую изображают в осях B-H.

Вектор называется вектором напряженности магнитного поля. Он носит вспомогательный характер, силовой характеристикой магнитного поля является вектор магнитной индукции . Связь между векторами и записывается следующим образом:

.

Уравнения Максвелла

Уравнения Максвелла выражают связи между характеристиками электромагнитного поля.

Сформулированы уравнения в 1861-1865 гг. Дж. К. Максвеллом на основе обобщения эмпирических законов электрических и магнитных явлений. Развивая идеи М. Фарадея, Максвелл впервые ввел точный термин "электромагнитное поле".

1. Первая пара уравнений Максвелла в интегральной форме

1.1. Первое уравнение первой пары - это закон Фарадея-Ленца

 

S - произвольная поверхность, "натянутая" на контур l. Это уравнение - обобщенная формулировка закона электромагнитной индукции.

13.1.2. Второе уравнение первой пары - нет магнитных зарядов

 

Поток вектора через произвольную замкнутую поверхность равен нулю. Причина этого - замкнутость линий индукции. Линии индукции замкнуты, т.к. в природе отсутствуют магнитные заряды.

2. Вторая пара уравнений Максвелла в интегральной форме

2.1. Первое уравнение второй пары - это теорема о циркуляции + что-то еще.

Для вектора теорема о циркуляции (11.5.4) гласит:

 

.

 

В вакууме:

.

Тогда

,

или

.

При непрерывном распределении тока через поверхность S

,

здесь j - плотность тока. Тогда имеем

.

Интеграл слева берется по произвольному воображаемому контуру, интеграл справа - по произвольной поверхности, "натянутой" на этот контур. В веществе теорема о циркуляции для вектора имеет тот же вид:

,

но при этом в интеграле справа не учитываются микроскопические токи вещества, приводящие к изменению магнитной индукции в веществе.

2.1.1. + что-то еще - это "ток смещения"

Применим теорему о циркуляции вектора к магнитному полю, созданному переменным электрическим током, перезаряжающим конденсатор.

,

.

На S2    j = 0,   но    , а по величине    ,    значит        ? .

Величину Максвелл назвал "током смещения".

Как видно, "ток смещения" - это переменное во времени электрическое поле. Первое уравнение второй пары утверждает, что магнитное поле создается током проводимости и переменным электрическим полем ("током смещения").

2.2. Второе уравнение второй пары - это теорема Гаусса для вектора

,

где qi - свободные, не связанные заряды.

При непрерывном распределении заряда   

.