Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Широкова.docx
Скачиваний:
17
Добавлен:
07.09.2019
Размер:
419.61 Кб
Скачать

12.Экспертные системы. Основные понятия и определения

Современные экспертные системы широко используются для тиражирования опыта и знаний ведущих специалистов практически во всех сферах экономики. Традиционно знания существуют в двух видах — коллективный опыт и личный опыт. Если большая часть знаний в предлагаемой области представлена в виде коллективного опыта (например, высшая математика), эта предметная область не нуждается в экспертных системах. Если в предметной области большая часть зна ний является личным опытом специалистов высокого уровня (экспертов), если эти знания по каким-либо причинам слабо структурированы, такая предметная область нуждается в экспертных системах.  Экспертные системы — это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей.

13. Обобщенная структура экспертной системы

Рис. 13.1. Обобщенная структура экспертной системы  Пользователь — специалист предметной области, для которого предназначена система. Обычно его квалификация недостаточно высока, и поэтому он нуждается в помощи и поддержке со стороны экспертной системы.  Инженер по знаниям — специалист по искусственному интеллекту, выступает в роли промежуточного звена между экспертом и базой знаний (инженер-интерпретатор).  Интерфейс пользователя — комплекс программ, реализующий диалог пользователя с экспертной системой на стадии как ввода информации, так и получения результатов.  База знаний — ядро экспертной системы, совокупности знаний предметной области, записанная на машинный носитель в форме, понятной эксперту и пользова­телю (обычно на некотором языке, приближенном к естественному). Параллельно такому «человеческому» представлению существует база знаний во внутреннем «машинном» представлении.  Решатель — программа, моделирующая ход рассуждений эксперта на основании знаний, имеющихся в базе знаний.  Подсистема объяснений — программа, позволяющая пользователю получить ответы на вопросы: «Как была получена та или иная информация?» и «Почему система приняла такое решение?». Ответ на вопрос «Как?» — это трассировка всего процесса получения решения с указанием использованных фрагментов базы знаний, то есть всех шагов цепи умозаключения. Ответ на вопрос «Почему?» — ссылка на умозаключение, непосредственно предшествовавшее полученному решению, то есть отход на один шаг назад.  Интеллектуальный редактор базы знаний — программа, представляющая инженеру по знаниям возможность создавать базы знаний в диалоговом режиме. 

14. Нейрокомпьютер и основы нейроинформатики

В 1992 году программа «Пятое поколение компьютеров» была завершена и ее сме­нила международная программа «Вычисления в реальном мире» (RWC — Real World Computing). В первую очередь речь идет о том, чтобы дать вычислительным и управляющим системам возможность самостоятельно, без помощи «пере­водчика» — человека воспринимать воздействия внешнего мира и действовать в нем. Авторы программы огромную роль (до 30-40% ее содержания) отводят ис­следованию естественных и созданию искусственных нейросетевых систем. Нейробионический подход к проблеме искусственного интеллекта основывается на использовании принципов работы мозга для конструирования интеллектуальных систем. Его привлекательность и перспективность обусловливаются тем, что на функциональном уровне нервная система обеспечивает недоступную (по крайней мере, на текущий момент) для технических устройств способность живых существ адаптироваться в реальном мире, а на «технологическом» уровне — уникальные возможности по быстродействию и надежности. Имитация работы мозга на ЭВМ (традиционно-последовательной) затруднена принципиальными различиями между конструкциями мозга и ЭВМ. В частности, из-за того, что когда одно устройство моделирует другое, сильно от него отличающееся, процесс моделирования протекает очень медленно. На ЭВМ достаточ­но просто моделируются формально-логические элементы мышления, а модели­рование способности человека (и животных) адаптироваться в изменяющихся и слабо формализованных условиях реального мира сопряжено со значительными сложностями, несмотря на то, что уровень технологии в микроэлектронике позволяет превзойти по плотности упаковки вычислительных элементов и по эконо­мичности энергопотребления нервную ткань. Как раз именно эту возможность адаптироваться к постоянно изменяющимся внешним условиям и необходимо обеспечить системам, претендующим на «интеллектуальность». В настоящее время сформировалось новое научно-практическое направление — создание нейрокомпьютера, представляющего собой ЭВМ нового поколения, качественно отличающуюся от предыдущих отсутствием заранее созданных алгоритмических программ и способностью к самоорганизации и обучению. Основу нейрокомпьютеров составляют нейронные сети — иерархически организованные параллельные соединения адаптивных элементов — нейронов, которые обеспечивают взаимодействие с объектами реального мира так же, как и биологи­ческая нервная система. Основные отличия нейрокомпьютера от обычной ЭВМ: параллельная работа большого числа простых вычислительных устройств обеспечивает огромное быстродействие;  нейронная сеть способна к обучению, которое осуществляется путем настройки параметров сети;  высокая отказоустойчивость и помехоустойчивость сети за счет того, что зна ния как бы «размыты» в ней и обрыв какой-то связи в общем случае не являет ся достаточным условием отказа, а устранение помех осуществляется за счет «скатывания» поступившего искаженного образа к ближайшему имеющемуся образцу с наименьшим энергетическим уровнем;  простое строение отдельных нейронов позволяет использовать новые физические принципы обработки информации для аппаратных реализаций нейросетей .  ПРИМЕЧАНИЕ  Нейрокомпьютеры создаются для решения определенного фиксированного круга задач. По-видимому, широкое распространение получат устройства, основанные на комбиниро­ванных технологиях, включающие по мере необходимости те или иные нейропроцессорные устройства. 

В настоящее время дальнейшее повышение производительности компьютеров связывают с системами, обладающими свойствами массового параллелизма. Одна из таких систем — нейрокомпьютер, основу которого составляет искусственная нейросетъ , реализованная аппаратно на электронных или оптических элементах. В отличие от микропроцессора, имеющего полный набор команд, каждый нейрон, из которых состоит нейросеть , представляет собой лишь простейший аналоговый преобразующий элемент. Однако коллективные свойства сети, содержащей миллионы нейронов, уже не являются тривиальными. Искусственная нейросеть — принципиально параллельная структура, естественным образом реализующая принцип потока данных.  Термин «нейронные сети» сформировался в 40-х годах XX века в среде исследователей, изучавших принципы организации и функционирования биологических нейронных сетей. В настоящее время в области науки нейроинформатики разработан ряд моделей переработки информации, называемых искусственными ней­ронными сетями или просто нейронными сетями. Обычно под нейронными сетя­ми понимается набор элементарных нейроподобных преобразователей информа­ции — нейронов, соединенных друг с другом каналами обмена информацией для их совместной работы.  Предметом исследования нейроинформатики является решение задач переработки информации с помощью нейросетей в различных предметных областях, особенно в плохо формализуемых, где существующие модели субъективны и неадекватны. Наиболее впечатляющие результаты использования нейросетей достигнуты при распознавании образов, при построении ассоциативной памяти, при создании самообучающихся экспертных систем, при решении оптимизационных задач большой размерности.  Нейроинформатика находится в стадии интенсивного развития. Однако основными являются только три принципиально различных типа сетей, большинство остальных распространенных нейросетей состоят из элемен­тов, характерных для сетей трех основных типов:  сетей прямого распространения (многослойных персептронов);  полносвязных сетей Хопфилда ;  карт (решеток) Кохонена ;