Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уч.пособие по ПрИЗОС (ПГУ).doc
Скачиваний:
60
Добавлен:
17.09.2019
Размер:
4.31 Mб
Скачать

4.2.1. Теория адсорбции

Способность поверхностных частиц (ионов, атомов или молекул) конденсированных тел притягивать и удерживать молекулы газа обусловлена избытком энергии на поверхности (по сравнению со средней энергией частиц в объеме тела) и присуща всем твердым веществам и жидкостям. На практике в качестве адсорбентов выгодно использовать вещества с развитой удельной (на единицу объема) поверхностью.

Количество адсорбата, удерживаемое на единичной площади поверхности раздела фаз, в конечном счете определяется силой взаимодействия между молекулами адсорбируемого вещества и частицами, находящимися в приповерхностных слоях адсорбента.

Благодаря постоянным колебаниям центров зарядов (электронных оболочек и ядер) атомов около среднего положения непрерывно возникают и исчезают дипольные, квадрупольные, высшие мультипольные моменты. Они создают в пространстве вокруг атомов пульсирующие электрические поля, характеристики которых могут быть вычислены в простейших случаях по уравнениям квантовой механики. Силы, возникающие при взаимодействии квантовых электрических полей частиц, участвующих в процессе адсорбции, и называют Ван-дер-ваальсовыми или дисперсионными силами. Дисперсионные силы действуют на границе раздела фаз и аналогичны силам взаимодействия между молекулами в объеме газа (силам межмолекулярного взаимодействия), обуславливающим отклонение характеристик реальных газов от идеальных. Согласно квантовомеханическим расчетам, силы Ван-дер-Ваальса резко убывают с увеличением расстояния между центрами зарядов взаимодействующих частиц (обратно пропорциональны 6-й степени расстояния) и на несколько порядков слабее обменных сил, создающих химическую связь. Однако, в отличие от объемных сил, дисперсионные могут действовать на относительно больших расстояниях (превышающих размеры молекул) и характеризуются ненасыщаемостью. Поле, создаваемое мгновенными дипольными моментами одной молекулы, может взаимодействовать с полями многих других молекул.

Принимается, что при дисперсионных взаимодействиях обобществления электронов не происходит, и химическая связь не образуется. Одну из двух граничных моделей адсорбции, предполагающую, что при удержании молекул газа на поверхности адсорбента не происходит электронного обмена и образования химической связи, называют физической адсорбцией или зачастую просто адсорбцией.

В теоретических расчетах учитывают кроме дисперсионного притяжения силу отталкивания зарядов, принимая ее обратно пропорциональной 12-й степени расстояния между центрами зарядов. Если взаимодействующие частицы имеют постоянные дипольные моменты (например, молекулы воды или ионные поверхности) или свободные электроны (металлические поверхности), то между ними возникают и классические электростатические силы. Точный теоретический расчет их величины невозможен, хотя на практике они вносят существенный вклад в силу взаимодействия, а иногда и определяют характер процесса адсорбции. Так, например, гораздо более широкое применение в производственных условиях активированных углей по сравнению с синтетическими полярными адсорбентами - силикагелями, цеолитами, объясняется тем, что угли ввиду неполярности поверхностных частиц одинаково взаимодействуют как с полярными, так и с неполярными молекулами газовой фазы. Молекулы воды, обладая постоянным дипольным моментом, взаимно притягивают друг друга в паровой фазе, вследствие чего диффундируют к поверхности угля хуже неполярных молекул. Поэтому активированный уголь достаточно эффективно извлекает загрязнители из влажных газов, в то время как полярные адсорбенты способы извлекать из них лишь воду.

Результаты теоретических расчетов характеристик физической сорбции имеют низкую сходимость с опытными данными и пригодны только для качественной оценки процессов.

По другой модели адсорбции предполагается образование на поверхности химической связи между молекулой газа и частицей адсорбента. Такую модель называют химической сорбцией или хемосорбцией.

Энергия взаимодействия в процессе хемосорбции близка (но не равна) энергии химической связи молекулы, состоящей из соответствующих элементов. Для теоретических расчетов энергии процесса хемосорбции используют уравнение Шредингера. Его строгое и точное решение получено лишь для случая взаимодействия одного протона и одного электрона. Теоретические методы расчетов более сложных систем весьма громоздки, а их результаты плохо совпадают с опытными данными, вследствие чего непригодны для практического использования при проектировании адсорбционных устройств.

4.2.2. Адсорбенты

Технико-экономические показатели процесса адсорбционной обработки отбросных газов во многом зависят от свойств адсорбентов, требования к которым формировались стремлением всемерно снизить энергетические и материальные затраты на очистку.

Адсорбент - твердое тело на поверхности, в порах которого происходит адсорбция. Адсорбенты отличаются высокой пористостью, имеют большую удельную поверхность. Так, у наиболее распространенных адсор­бентов она может достигать 1000 м2/г.

Промышленные адсорбенты изготавливают из твердых пористых материалов и используют в дробленном, гранулированном или порошкообразном виде.

Адсорбент должен иметь высокую сорбционную емкость, т.е. возможность поглощать большое количество адсорбтива при его малой концентрации в газовой среде, что зависит от удельной площади поверхности и физико-химических свойств поверхностных частиц. Адсорбционная емкость адсорбента зависит от его природы. Она возрастает с увеличением поверхности, пористости, со снижением раз­меров пор адсорбента, а также с повышением концентрации адсорбтива в газе-носителе и давления в системе. С увеличением температуры и влажности адсорбционная емкость адсорбентов снижается. Хорошие адсорбенты выдерживают несколько сотен и тысяч циклов «адсорбция-десорбция» без существенной потери активности.

Адсорбент должен иметь высокую селективность (избирательность) в отношении адсорбируемого компонента. Он должен обладать достаточной механической прочностью. Чтобы аэродинамическое сопротивление слоя было невысоким, плотность адсорбента должна быть небольшой, а форма частиц обтекаемой и создавать высокую порозность насыпки. Адсорбент для процесса физической сорбции должен быть химически инертным по отношению к компонентам очищаемой газовой среды, а для химической сорбции (хемосорбции) - вступать с молекулами загрязнителей в химическую реакцию. Для снижения затрат на десорбцию уловленных компонентов удерживающая способность адсорбента не должна быть слишком высокой, т.е. он должен иметь способность к регенерации. Адсорбенты должны иметь невысокую стоимость и изготавливаться из доступных материалов.

Поры в твердых телах классифицируются на: макропоры с радиусом более 1000…2000 °А; переходные (мезопоры) с радиусом от 15 до 1000 °А; микропоры с радиусом до 15 °А.

Макропоры с размерами пор более 1000…2000 °А являются транспортными каналами для подвода адсорбируемых молекул к мезопорам и микропорам. В макропорах и мезопорах наблюдается послойный механизм адсорбции, в микропорах, размер которых соизмерим с размерами адсорбируемых молекул, адсорбция носит характер объемного заполнения. Поэтому для микропористых адсорбентов объем пор, а не поверхность адсорбента играет решаю­щее значение в адсорбции.

Адсорбент с крупными порами лучше адсорбирует вещества с большими размерами молекул и при больших давлениях. Среднепористый адсорбент эффективнее адсорбирует при средних давлениях, а мелкопористый - при низких давлениях.

Удельный объем микропор в адсорбентах достигает 0,2…0,6 смЗ/г, а удельная поверхность - до 500 м2/г и более. Поэтому микропоры играют основную роль при разделении газовых смесей, особенно при очистке газов от малых концентраций при­месей.

При прочих равных условиях количество адсорбируемого вещества (адсорбата) будет возрастать по мере увеличения адсорбирующей поверхности. Сильно развитую поверхность имеют вещества с очень высокой пористостью, губчатой структурой или в состоянии тончайшего измельчения. Из практически используемых адсорбирующих веществ (адсорбентов) ведущее место принадлежит различным видам изготавливаемых активированных углей (древесный, костяной и др.), поверхность которых может превышать 1000 м2/г. Хорошими адсорбентами являются также гель кремниевой кислоты (силикагель), глинозем, каолин, некоторые алюмосиликаты (алюмогели), цеолиты и другие вещества. Эти вещества отличаются друг от друга природой материала и, как следствие, своими адсорбционными свойствами, размерами гранул, плотностью и др.

Различают истинную, кажущуюся и насыпную плотность адсорбента. Истинная плотность - масса единицы объема плотного адсорбента (т. е. без учета пор). Кажущаяся плотность — масса единицы объема пористого материала адсорбента. Под насыпной плотностью понимают массу единицы объема слоя адсорбента, включая объем пор в гранулах адсорбента и промежутков между гранулами адсорбента.

Активированный уголь - пористый углеродный адсорбент. Применяют несколько марок активированного угля, различающихся размером микропор. Активированный уголь соответствующей марки используют для адсорбции различных компонентов (газов, летучих растворителей и др.), обладающих различными свойствами. Размер гранул активированного угля 1,0…6,0 мм, насыпная плотность 380…600 кг/м3.

Силикагель - синтетический минеральный адсорбент. Силикагели представляют собой гидратированные аморфные кремнеземы (AliO2nH2O). Удельная поверхность силикагеля составляет 400…770 м2/кг. Силикагель применяется главным образом для поглощения влаги. Он способен удерживать до 50 % влаги к массе адсорбента. Его преимущество по сравнению с активированным углем — негорючесть, низкая температура регенерации (100…200°С), низкая себестоимость при массовом производстве, относительно высокая механическая прочность. Промышленность выпускает ряд марок силикагеля, отличающихся формой и размерами зерен (0,2…7,0 мм - кусковые и гранулированные), насыпная плотность 400…900 кг/м3 . Силикагель обладает высокой адсорбционной емкостью. Его используют часто для осушения газа и поглощения паров, например, метилового спирта из газового потока. Требования, предъявляемые к адсорбентам, часто противоречивы и иногда трудновыполнимы. К последним относится и необходимость работы с влажными газами. Для большинства современных, адсорбентов требуется предварительная осушка подаваемых на очистку газовых выбросов.

Алюмогель - активная окись алюминия. Алюмогель (Al2O3nH2O) получают прокаливанием гидроксидов алюминия. Удельная поверхность алюмогелей составляет 170…220 м2/кг, суммарный объем пор 0,6…1,0 см3/г. Алюмогели стойки к воздействию капельной влаги. Гидрофильный адсорбент с развитой пористой структурой. Используется, как и силикагель, для осушки газов и поглощения из них ряда полярных органических веществ. Благодаря своим положительным свойствам (доступность, стойкость к воздействию жидкостей и др.) широко применяется. Выпускается в виде гранул цилиндрической формы диаметром 2,5…5 мм, высотой 3…7 мм, насыпная плотность 500…700 мм, и шаровой формы - радиус 3…4 мм, насыпная плотность 600…900 кг/м3.

Цеолиты - алюмосиликаты, содержащие оксиды щелочных и щелочноземельных металлов. Характеризуются регулярной структурой пор, размеры которых соизмеримы с размерами молекул. Этот адсорбент называют «молекулярные сита» за их способность разделять вещества на молекулярном уровне благодаря структуре и размерам своих пор. Цеолиты адсорбируют газы, молекулы которых соответствуют размерам "окон" в кристаллической решетке. Так, цеолит марки NaA сорбирует газы с размером молекул не более 4 нм - метан, этан, аммиак, сероводород, сероуглерод, оксид углерода и др. Цеолит СаА сорбирует углероводороды нормального строения и не сорбирует изомеры. Цеолиты СаХ и NaX могут сорбировать ароматические, сероорганические, нитроорганические, галогензамещенные углеводороды. Однако из влажных потоков цеолиты извлекают только пары воды. Цеолиты обладают также высокой селективностью. Цеолиты выпускаются в виде гранул цилиндрической и шаровой формы. Размер гранул шарообразных d = 4 мм, цилиндрических 4 мм, насыпная плотность 600…900 кг/м3.

Иониты – высокомолекулярные соединения природного и искусственного происхождения. Не нашли пока широкого применения для очистки отходящих газов.

Единственным адсорбентом, удовлетворительно работающим во влажных средах, является активированный уголь. Он удовлетворяет и большинству других требований, в связи с чем широко применяется. Одним из основных недостатков активированного угля является химическая нестойкость к кислороду, особенно при повышенных температурах.

Остальные адсорбенты проявляют, как правило, селективность к улавливанию загрязнителей. Так, оксиды алюминия (алюмогели) используются для улавливания фтора и фтористого водорода, полярных органических веществ, силикат кальция - для улавливания паров жирных кислот, силикагель - для полярных органических веществ, сухих газовых смесей. Большинство полярных адсорбентов можно использовать для осушки газов.

Для процессов хемосорбции используется импрегнирование некоторых из приведенных сорбентов. Импрегнирующие (пропитывающие) вещества могут действовать двояко: вступать в реакции с определенными загрязнителями или катализировать реакции, ведущие к их обезвреживанию - распаду, окислению и т.д. Так, при взаимодействии активированного угля, обработанного тяжелыми галогенами (бромом, йодом), с метаном или этаном, образуются тяжелые галогензамещенные углеводороды, которые затем легко адсорбируются. Алюмосиликаты, пропитанные оксидами железа, при температуре разложения галогенорганических соединений способствуют реакции хлора с оксидом металла. Образовавшиеся парообразные хлориды металлов могут быть в дальнейшем легко сконденсированы, так как имеют низкую упругость насыщенных паров.