Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все машины за 2 семестра ТОМиТП.docx
Скачиваний:
58
Добавлен:
18.09.2019
Размер:
16.43 Mб
Скачать
  1. Бытовые холодильники и морозильники

Холодильный агрегат (рис. 17.34) компрессионного бытового холодильника состоит из герметичного компрессора 1, испарителя 5, теплообменника 6, конденсатора 4, фильтра-осушителя 3 и системы трубопроводов, включающей нагнетательную 2, капиллярную 7 и всасывающую 8 трубки. Герметичный компрессор 1 со встроенным электродвигателем обычно устанавливается внизу под шкафом, конденсатор 4 - на задней стенке, а испаритель 5 образует небольшое морозильное отделение в верхней части камеры.

Рис. 17.34. Принципиальная схема холодильного агрегата

Охлаждение в холодильной камере осуществляется вследствие изменения агрегатного состояния хладагента в системе герметичного холодильного агрегата. Пары хладагента отсасываются из испарителя 5 компрессором 1 и проходят внутри кожуха, охлаждая обмотку электродвигателя. Сжатые в компрессоре пары хладагента по нагнетательной трубке 2 поступают в охлаждаемый окружающим воздухом конденсатор 4. Давление паров хладагента в конденсаторе зависит от вида хладагента. В конденсаторе пары хладагента переходят в жидкое состояние, отдавая теплоту окружающей среде. Жидкий хладагент из конденсатора 4 поступает через фильтр 3 в капиллярную трубку 7 (где происходит его дросселирование) и затем в испаритель 5. Капиллярная трубка 7 создает необходимый для работы перепад давления между конденсатором и испарителем. Давление хладагента в испарителе 5 понижается. Жидкий хладагент при низком давлении кипит, отнимая теплоту от стенок испарителя и воздуха холодильной камеры. Из испарителя пары хладагента по всасывающей трубке 8 вновь поступают в кожух компрессора 1, и цикл повторяется. Холодильные пары хладагента, проходя по всасывающей трубке, охлаждают жидкий хладагент, который поступает по капиллярной трубке из конденсатора в испаритель. Теплообменником 6 служит участок всасывающей и капиллярной трубок, спаянных между собой. Заданная температура в холодильной камере поддерживается автоматически терморегулятором, чувствительный элемент которого крепится к испарителю. Для пуска электродвигателя и защиты его от токовых перегрузок используют пускозащитное реле.

Р ис. 17.35. Принципиальная схема холодильника "ЗИЛ-64"

Холодильник "ЗИЛ-64" (рис. 17.35) имеет автоматическое оттаивание холодильной камеры 9 и отвод талой воды за ее пределы из канала 6 через водяной затвор 5, а также через сливной шланг 10 в сосуд 11. Холодильный агрегат содержит самооттаивающий испаритель 2 с воронкой 1 и ограждением 8, а также испаритель 4 низкотемпературного отделения с рамкой короба 7. Компрессор такого холодильника герметичный и содержит кривошипно-шатунный механизм. Холодильный агрегат заполнен маслом ХФ 12-16 в количестве 340±5 г и хладагентом R12 в количестве 115±5 г. Внутренняя камера холодильника стальная, эмалированная, что создает необходимые гигиенические условия для хранения. Температурный режим холодильника задают соответствующей установкой ручки терморегулятора 3. Низкотемпературное отделение имеет объем до 30 дм3, а температура в нем поддерживается не выше -18 °С.

Прилавок-витрина ПВХС/В-1-0,315 (рис. 17.38) состоит из трех основных частей: охлаждаемого прилавка, охлаждаемой демонстрационной витрины и машинного отделения. Охлаждаемый прилавок расположен в правой части прилавка-витрины и представляет собой замкнутый объем, образованный стенками из коррозионно-стойкой стали и дверьми 12. Сверху прилавок закрыт столом, а короб 23 и облицовка дверей имеют заливную теплоизоляцию 19.

Р ебристо-трубные испарители 20 и 25, защищенные от механических повреждений съемными решетками 4,16 и 24, разделяют прилавок на два отсека. В каждом отсеке размещается кассета 14, в которую устанавливают функциональные емкости с продуктами. Внутренний объем прилавка освещается лампой, включающейся при открывании любой из дверей. Для сбора талой воды под испаритель прилавка установлен поддон 22. Витрина расположена над машинным отделением и отделена от него коробом, залитым теплоизоляцией. Короб и двойной ряд стекол 17 образуют полезный охлаждаемый объем, который закрывается раздвижными створками 10. Сверху витрина закрыта полкой, к которой крепятся светильники 18, 26 и приборная панель 8.

Рис. 17.38. Прилавок-витрина ПВХС/В-1-0,315

Холодильный агрегат 15 смонтирован в средней части машинного отделения, где установлены терморегулирующий вентиль 21 и термореле 11. В левой части машинного отделения расположена выдвижная панель с электроаппаратурой 3. В окне решетки расположена панель, на которой закреплены термометр 6, переключатель холодильного агрегата 5, выключатель лампы освещения витрины 7 и сигнальная лампа 9 автоматического оттаивания испарителей. Регулировку прилавка витрины по высоте производят опорами 1, ввернутыми в нижнюю раму 13, на которой находится заземляющий зажим 2.

Абсорбционные холодильники получили свое название от процесса абсорбции, проходящего в них. Применительно к холодильным процессам абсорбция - это поглощение жидким поглотителем паров хладагента, образующихся в испарителе.

Водоаммиачный раствор, заполняющий холодильный агрегат, образуется из следующих компонентов. Хладагентом здесь служит аммиак (R717), абсорбентом - бидистиллят воды, ингибитором - двухромовокислый натрий, инертным газом -водород.

Принцип действия абсорбционных бытовых холодильников, как и других абсорбционных холодильных машин, основан на поглощении паров аммиака водой.

Герметичная система аппаратов и трубопроводов (рис. 17.39) заполнена водоаммиачным раствором. Кроме того, в систему из бачка 10 добавлен легкий инертный газ - водород, так что суммарное давление водорода и паров аммиака составляет (14...15)×105 Па. При включении электродвигателя 11 из водоаммиачного раствора, находящегося в термосифоне 9, выкипает аммиак, унося жидкий раствор в генератор-кипятильник 1, где аммиак продолжает выкипать из раствора вследствие подогрева. Пары аммиака и частично пары воды поступают в наклонную трубку-ректификатор 2. Водяные пары конденсируются здесь и стекают обратно в генератор, а пары аммиака идут дальше - в конденсатор 3 и, превращаясь в жидкость в результате конвективного охлаждения, поступают в испаритель 4.

В то время как давление аммиака в генераторе при подогреве раствора растет, давление паров аммиака в испарителе падает, так как оставшийся в генераторе слабый раствор попадает через теплообменник 8 в верхнюю часть абсорбера 7 и, стекая по трубкам, поглощает пары аммиака, отбрасывая их из испарителя. Верхнюю часть испарителя начинает заполнять водород, который из абсорбера попадает в нее через газовый теплообменник 5.

С уммарное давление паров аммиака и водорода в испарителе и абсорбере такое же, как и давление паров аммиака в генераторе. Однако температура испарения аммиака соответствует не суммарному давлению, а парциальному давлению паров аммиака, т.е. (2...3)×105 Па. Жидкий аммиак поступает из конденсатора в испаритель постепенно, по мере того как часть жидкости в испарителе активно испаряется и отсасывается в абсорбер. Регулирующий вентиль здесь не требуется.

Рис. 17.39. Принципиальная схема абсорбционного бытового холодильника

В абсорбционном бытовом холодильнике отсутствует и насос для перекачки раствора из абсорбера в генератор, так как вследствие равенства давления в этих аппаратах жидкость может перемещаться из одного в другой по принципу сообщающихся сосудов. По мере выбрасывания крепкого раствора из термосифона в генератор новые порции раствора из бачка абсорбера 6 снова поступают в термосифон. Накопившийся в генераторе слабый раствор переливается в верхнюю часть абсорбера.