Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ready_part_1.doc
Скачиваний:
10
Добавлен:
20.09.2019
Размер:
649.73 Кб
Скачать

Примеры

1. Найти полный телесный угол, стягиваемый любой замкнутой

поверх­ностью, окружающей начало координат.

Решение. Подставим в выражение d=dS/R2 , определяющего бесконечно малый телесный угол, величину dS из формулы (1.3.1), получим

sin d d

Интегрируя по всем возможным углам (изменяется от 0 до 2,  - от 0 до ), получим

2. В некотором сферическом объеме газ находится в равновесии и содержит N=2,7·1025 молекул. Построим конус с вершиной в центре этой сферы и углом раствора в один стерадиан. Какое число N1 моле­кул из общего числа N имеют направления скоростей, заключенных в этом пространственном угле?

Решение: Из формулы (1.3.2), путем интегрирования находим искомое число

1.4. Число ударов молекул о стенку сосуда

Получим формулу для вычисления числа ударов молекул в единицу времени о единичную площадь стенки сосуда, в котором находится газ.

Возьмем на стенке сосуда, бесконечно малую площадку dS, перпендикулярную оси Z системы координат XYZ ( рис. 8).

На этой площадке , как на основании, построим бесконечно узкий цилиндр с осью, имеющей направление, определяемое сферическими углами и , и длина которой равна vdt, где v - скорость молекулы, dt - промежуток времени. Объем этого цилиндра

, (1.4.1)

а число молекул в нем d=ndV, где n - концентрация молекул в сосуде. Из-за хаотичности движения не все d молекул достигнут площадки dS за время dt. Ее достигнут только те из молекул, которые, во-первых, движутся в направлении к площадке dS и, во-вторых, имеют скорости, близкие к , при этом за время dt они проходят расстояние dt, равное длине образующей цилиндра, и достигают площадки dS. Найдем число таких молекул в объеме dV цилиндра.

И если к моменту времени t эти молекулы находились в объеме dV цилиндра, тогда время от t до t+dt все они достигнут площадки dS.

Р и с. 8

Обозначим через dn число молекул в единице объема газа, которые имеют скорости, заключенные в интервале (, +d). Пусть среди этих молекул молекул в единице объема име­ют направления движения, определяемые сферическими углами, взяты­ми из интервалов (,+d) и (,+d). Согласно формуле (1.3.5), количество таких молекул в единице объема газа равно

(1.4.2)

Число же указанных молекул в объеме dV рассматриваемого цилинд­ра

dn,,=dn,,  dV (1.4.3)

С учетом формул (1.4.1) и (1.4.2) выражение (1.4.3) примет вид

(1.4.4) Таким образом, среди всех молекул, находящихся в объеме dV цилиндра, d,, молекул имеют близкие к скорости, и их направления движения определяются углами, близкими к углам и . Однако из объема V, занимаемого газом, к площадке dS подлетают молекулы с других направлений и с иными скоростями. Чтобы учесть эти молекулы, необходимо проинтегрировать выражение (1.4.4) по всем возможным углам и и скоростям :

(1.4.5)

Сферический угол в общем случае изменяется от 0 до . В выражении (1.4.5) интегрирование по  произведено от 0 до /2, так как при интегрировании по в пределах от /2 до рас­сматриваемые молекулы, как легко видеть из рис.8, будут иметь на­правление движения, соответствующее их удалению от площадки.

Разделив обе части соотношения (1.4.5) на dtdS, получим

(1.4.6)

Таким образом, выражение (1.4.6) определяет число ударов молекул га­за в единицу времени о единичную площадку стенки сосуда.

Для выяснения смысла величины интеграла в выражении (1.4.6) умножим и разделим его на концентрацию молекул n=N/V.

(1.4.7)

Если обозначить через dN число молекул в объеме V, которые имеют скорость от до + d, то dn=dN /V будет опре­делять число таких молекул в единице объема газа. Величина же

(1.4.8)

при больших N представляет собой вероятность того, что случайно "взятая" в газе молекула будет иметь скорость, заключенную в ин­тервале (,+d). Эта вероятность связана с функцией распре­деления (плотностью вероятности) следующим соотношением (см. А.23):

(1.4.9)

Функция распределения молекул по скоростям F() является важ­нейшей характеристикой равновесного состояния газа. Ее явный вид будет получен в последующих параграфах из весьма общих предпосылок.

С учетом формул (1.4.8) и (1.4.9), выражение (1.4.7) примет вид

(1.4.10)

Интеграл, стоящий в соотношении (1.4.10), представляет среднее зна­чение скорости (см. формулу (А.25) Приложения А):

(1.4.11)

Поэтому

(1.4.12)

Как видно из выражения (1.4.12), число ударов молекул газа в единицу времени о единичную площадку пропорционально концентрации и средней скорости их движения, что находится в полном согласии с нашей интуицией.

Пример

1. В космическом корабле находится воздух объема V с концентрацией n0, поддерживаемый при постоянной температуре. За бортом корабля вакуум. Найти зависимость концентрации молекул воздуха в корабле от времени, если в тонкой части его стенки образовалось малое отверстие площади S?

Решение. Пусть через время t после образования отверстия кон­центрация воздуха в корабле стала равной n(t). Тогда число молекул воздуха, влетающих в отверстие площади S за время dt (от момента t до t+dt), согласно формуле (1.4.5)

d= n(t)Sdt (1.4.13)

Эти молекулы покидают кабину корабля. С другой стороны, это число молекул можно выразить иначе.

Изменение концентрации воздуха в корабле за время dt (от t до t+dt)

Откуда находим

d = –Vdn (1.4.14)

Сравнивая выражения (1.36) и (1.37), получаем

(1.4.15)

Проинтегрируем равенство (1.4.15).

Откуда находим искомую зависимость концентрации от времени

(1.4.16)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]