Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MATEM_ShPOR_5.docx
Скачиваний:
22
Добавлен:
21.09.2019
Размер:
747.83 Кб
Скачать

61. Линейные ду 1-го порядка.

Уравнение вида ,

где p(x) и q(x) – заданные функции, назыв. линейным дифференциальным уравнением 1-го порядка. Если в ур-нии 1 правая часть тождественно равна 0, то получим ур-ние вида (2) (однородное линейное ДУ 1-го порядка)

2—решают как ур-ние с раздел. переменными

1—решают с помощью подстановки:

,

(u’v+uv’)+p(x)uv=q(x)

u’v+u(v’+p(x)v)=q(x)

Подставляем во 2-ое уравнение системы (b):

Общее решение уравнения :

62. Линейные ду 2-го порядка.

Вид:

Методика решения:

Уравнение

Общее решение зависит от корней характеристического.

a) D<0, , тогда решение имеет вид:

b)D=0, =>

c) D<0, =>

Лин неоднор ДУ 2-го порядка с пост коэфф-ми.

Рассмотрим уравнение y´´+py´+qy=r(x) /где p,q € R .

которое имеет вид y=yO+yЧ, где

yO-общее решение уравнения y´´+py´+qy =0

yЧ-частное решение уравнения y´´+py´+qy=r(x) , которое зависит от вида правой части,т.е r(x)

Рассмотрим некоторые частные случаи:

1) r(x)=Pn(x) ,где Pn(x) – многочлен степени «n»

В этом случае решение yЧ ищут из уравнения к²+pк+q=0 в виде:

• yЧ=Qn(x) при q≠0

• yЧ=x Qn(x) q=0, p≠0

• yЧ=x² Qn(x) q=p=0

2) r(x)=а где а,м € R , а,м =соnst

Вид частного решения следущее:

• yЧ=А если «м» не явл корнем Ур-я к²+pк+q=0

(корни некратные,некомплексные)

• yЧ=Аx если «м» –простой корень ур-я к²+pк+q=0

•yЧ=Аx² если «м»-кратный корень Ур-я к²+pк+q=0

3) r(x)=acosmx+bsinmx где a,b,m=const

• yЧ= Acosmx+Bsinmx при условии что p²+(q-m²)≠0

• yЧ= x(Acosmx+Bsinmx) если p²+(q-m²)=0, p=0,q= m²

63. Понятие числового ряда и суммы ряда. Геометрическая прогрессия.

О1. Пусть задана бесконечная последовательность чисел а1, а2, …аn…(1), тогда выражение вида а1+а2+…+аn+…=∑аn (2) называется числовым рядом. аn –n-ый общий член ряда 2

О2.Для корректного опр-ния суммы бескон. Ряда восп-ся операцией предельного перехода. Частичная n-ая сумма ряда(1)назыв. Sn его n первых членов Sn=u1+u2+u3+…+un (3). Образуем послед-ть из S1,S2….,Sn—последовательность частичных сумм. Если сущ. Конечн.предел S= Sn(3) то ряд (2)-СХОД. Если лимит не сущ или бескон. то ряд-РАСХ

Ряд вида - геом.прогрессия,ряд сход.если и его сумма S=b/1-q,если ряд расх. Ряд гармонический и он всегда расход. Примеры рядов:

расходится

сходится

Док-во расх-ти гармонического ряда по Коши: f(x)=1/x = ; = (lnx) = (lnB*0),где lnB→

64. Простейшие свойства сходящихся рядов.

Свойства-1. Если ряд u1+u2+u3+….un+…= (1) сход(расх.). И его сумма-S то сход(расх если с не равно 0) ,также и ряд и его сумма c*S.

2.Если ряд (1) и ряд их суммы S1 и S2 соответственно ,то сход и ряды и их суммы равны S1+S2.

3.Если к ряду (1) прибавить или отнять от него конечное число членов, то получим ряд и ряд (1) сход или расх одновременно. Ряд un+1+un+2+…= обознач. Rn-остаток ряда (1),если ряд (1) сход. то его остаток стрем. к 0 при n стрем. к бесконечн.( Rn=0).

Необход.признак сходимости- если ряд(1) сход. то общий член этого ряда стрем к 0 ( an=0) Док-во: un= (Sn-Sn-1)=0. Данный признак –не явл-ся достаточным(например гарм. ряд расх но un= 1/n стрем. к 0).

65. Интегральный признак сходимости ряда с положительными членами.

Пусть задан ряд , члены кот положит и не возр-т, т.е. , а ф-я f(x) непрер, невозраст на [1;∞) f(1)=a1, f(2)=a2…f(n)=an

Тогда если сх-ся, то и числовой ряд сходится и наоборот.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]