Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по физике.docx
Скачиваний:
33
Добавлен:
24.09.2019
Размер:
1.37 Mб
Скачать

1, В общем случае волновое уравнение записывается в виде

,

где   — оператор Лапласа  — неизвестная функция,   — время,   — пространственная переменная,   — фазовая скорость.

В одномерном случае уравнение называется также уравнением колебания струны и записывается в виде

.

  • 2, Скорость электромагнитной волны в вакууме (воздухе):

где ε0 — электрическая постоянная, μ0 — магнитная постоянная.

Скорость распространения электромагнитных волн в вакууме c = 3108 м/с является максимально (предельно) достижимой величиной. В любом веществе их скорость распространения меньше c и зависит от его электрических и магнитных свойств:

где ε — диэлектрическая проницаемость среды, табличная величина, μ — магнитная проницаемость среды, табличная величина.

4. Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

5. Энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры:  , где  - постоянная Стефана-Больцмана.  =5,67032(71)* .

6. Эйнштейн показал, исходя из справедливости закона излучения абсолютно чёрного тела, что квант энергии должен также обладать импульсом 

7. Для волны де Бройля частицы движутся только относительно оси х с импульсом        Тогда 

8. Фермион, ферми-частица, частица или элементарное возбуждение квантовой системы многих частиц – квазичастица, обладающая полуцелым спином. К Ф. относятся квазичастицы, как, например, электронное и дырочное возбуждения в твёрдом теле. Связанные системы из нечётного числа Ф. (атомные ядра с нечётным атомным номером, атомы с нечётной разностью атомного номера и числа электронов и др.) тоже являются Ф. Для Ф. справедлив Паули принцип, соответственно системы тождественных Ф. подчиняются Ферми – Дирака статистике.

10. Поляризаторы-приборы дающие возможность получить поляризованный свет.Анализаторы-это приборы с помощью которых можно проанализировать является ли свет поляризованным или нет.Конструктивно поляризатор и анализатор это одно и тоже.З-н Малюса.Пусть на поляризатор падает свет интенсивности ,если свет является естеств-ым то у него все направления вектора E равны вероятны.Каждый вектор можно разложить на две взаимно перпендикулярные составляющие:одна из которых параллельна плоскости поляризации поляризатора,а другая ей перпендикулярна.

Закон Малюса с учетом потерь на отражение и поглощение в поляризаторе:

,

где – коэффициент потерь на отражение и поглощение в поляризаторе; – коэффициент пропускания.

11. Атом водорода — физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.

Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для него проблема двух тел имеет точное или приближенное аналитическое решения. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.

В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощенно рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/r). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией.

находим радиусы стационарных орбит электронов

. Для атома водорода (Z=1) радиус первой орбиты электрона при n = 1, называемый первым боровским радиусом (а), равен

r1 = a = 0,528 А. (4)

внутренняя энергия атома слагается из кинетической энергии электрона (Т = mv2/2) и потенциальной энергии взаимодействия электрона с ядром (U =-Ze2/(4pe0r)),

при выводе формулы (5) учли формулу (1). Подставляя в (5) квантовые радиусы орбит электронов (3), получим, что энергия атома (которая равна энергии электрона, так как ядро атома неподвижно) может принимать только следующие дозволенные дискретные (квантовые) значения

где знак минус означает, что электрон находится в связанном состоянии. (В атомной физике энергия измеряется в электронвольтах, 1 эВ = 1,6×10-19Дж).

Для описания длин волн λ четырех видимых линий спектра водорода И. Бальмер предложил формулу

где n = 3, 4, 5, 6; b = 3645,6 Å.

Спектральные серии водорода — набор спектральных серий, составляющих спектр атома водорода. Поскольку водород — наиболее простой атом, его спектральные серии наиболее изучены. Они хорошо подчиняются формуле Ридберга:

,

где R = 109 677 см−1 — постоянная Ридберга для водорода,   — основной уровень серии. Спектральные линии возникающие при переходах на основной энергетический уровень называются резонансными, все остальные — субординатными.

Модель атома Н. Бора была крупным шагом в развитии атомной физики и явилась важным этапом в создании квантовой механики. Однако эта модель атома внутренне противоречива: с одной стороны, применяет законы классической физики, с другой — основывается на квантовых постулатах. С ее помощью удалось объяснить основные закономерности в спектрах атомов водорода и водородоподобных систем и вычислить частоты спектральных линий. Оставалось, однако, неясным, от чего зависит интенсивность излучения тех или иных частот. Без ответа остался вопрос, почему совершаются те или иные переходы. Серьезным недостатком модели атома Бора была невозможность описать с ее помощью атом гелия — один из простейших атомов, непосредственно следующий за атомом водорода.

Билет24

1, Гармонической волной называется линейная монохроматическая волна, распространяющаяся в бесконечной динамической системе. В распределённых системах общий вид волны описывается выражением, являющимся аналитическим решением линейного волнового уравнения

где   – некоторая постоянная амплитуда волнового процесса, определяемая параметрами системы, частотой колебаний и амплитудой возмущающей силы;   – круговая частота волнового процесса,   – период гармонической волны,   – частота;   – волновое число,   – длина волны,   – скорость распространения волны;  – начальная фаза волнового процесса, определяемая в гармонической волне закономерностью воздействия внешнего возмущения.

2, Вектор Умова-Пойнтинга S= [ExH] - вектор, направление которого совпадает с направлением распространения энергии в электромагнитной волне, а модуль |S| равен потоку энергии.

3, Интерференция света — перераспределение интенсивности света в результате наложения(суперпозиции) нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

4,  оказывается находим   - связь разности фаз колебаний с оптической разностью хода по формуле:  радиан.

5, Таким образом, размер отверстия, выраженный в количестве открытых зон Френеля, зависит не только от расстояний r и s, но и от длины волны l источника света. Можно показать, что если число открытых зон Френеля нечетное, то в т. P будет наблюдаться светлое пятно, если же открыто четное число зон Френеля, то в центре картины будет темное пятно.

6, Энергия фотона: где ν — частота, λ — длина волны света, h = б,626·10-34 Дж·с = 4,136·10-15 эВ ·с,  — постоянная Планка,  ω — циклическая частота. 

7, Подставляя это значение в выражение для энергии, получим, что

Отсюда мы можем найти волновое число (по определению это обратная длина волны или число длин волн, укладывающихся на 1 см) фотона, излучаемого атомом водорода за один переход из возбужденного состояния с главным квантовым числом   в состояние с неким фиксированным главным квантовым числом 

8, Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Спин измеряется в единицах   (приведённой постоянной Планка, или постоянной Дирака) и равен   где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

10, существовании волн материи была детально разработа­на, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, ка­ким связаны между собой длина свето­вой волны и импульс фотона. Найдем выражение, связывающее импульс фото­на р с длиной волны света 

Формула де Бройля λ = h p

Первые экспериментальные исследования были выполнены американскими учёными К. Девиссоном и Л. Джермером в 1927 году. Они исследовали дифракцию электронов на монокристалле никеля, кристаллическая структура которого была известна из опытов по дифракции рентгеновского излучения.

Схема опыта:

Электроны от электронной пушки S, прошедшие ускоряющую разность потенциалов U, падали нормально на сошлифованную поверхность кристалла никеля C. С помощью детектора D исследовалось число электронов , отраженных от кристалла под углом   при различных значениях U. Кристаллическая решетка в опыте Дэвиссона и Джермера играла роль объёмной отражательной дифракционной решетки.

Результаты экспериментальных исследований:

Максимальное отражение электронов наблюдалось при ускоряющей разности потенциалов U=54 В, что соответствует дебройлевской длине волны

 = 0,167 нм.