Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика редактированные ответы.doc
Скачиваний:
31
Добавлен:
24.09.2019
Размер:
2.51 Mб
Скачать

37 Реальный газ

Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева — Клапейрона: где p — давление; V - объем T — температура; Zr = Zr (p,T)  — коэффициент сжимаемости газа; m - масса; М — молярная масса; R — газовая постоянная. Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не только температуры, но и объёма.

Уравнение состоянияТермическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где  — давление,  — молярный объём  — абсолютная температура,  — универсальная газовая постоянная.

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка учитывает силы притяжения между молекулами (давление на стенку уменьшается, т.к. есть силы, втягивающие молекулы приграничного слоя внутрь), поправка  — силы отталкивания (из общего объёма вычитаем объём, занимаемый молекулами).Для молей газа Ван-дер-Ваальса уравнение состояния выглядит так: где — объём,

Внутренняя энергия газа Ван-дер-ВаальсаПотенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы, при разведении молекул на бесконечность: Внутренняя энергия газа Ван-дер-Ваальса складывается из его кинетической энергии (энергии теплового движения молекул) и только что нами посчитанной потенциальной. Так, для одного моль газа: где  — молярная теплоёмкость при постоянном объёме, которая предполагается не зависящей от температуры.

38 Первое начало термодинамики

Существует несколько эквивалентных формулировок первого начала термодинамикиВ любой изолированной системе запас энергии остаётся постоянным.[2] Это — формулировка Дж. П. Джоуля (1842 г.).Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних силИзменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики[2] (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется. Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты , сообщённому системе, в сумме с изменением энергии, связанной с количеством вещества при химическом потенциале , и работы [3], совершённой над системой внешними силами и полями, за вычетом работы , совершённой самой системой против внешних сил Для элементарного количества теплоты , элементарной работы и малого приращения внутренней энергии первый закон термодинамики имеет вид:

Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Важно заметить, что и являются полными дифференциалами, а и  — нет.

Применение первого начала термодинамики к изопроцессамСреди равновесных процессов, происходящих с термодинамическими системами, выде­ляются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1—2 есть изохорное нагревание, а 13 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е. Как уже указывалось в § 53, из первого начала термодинамики (Q=dU+A) для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии: Согласно формуле Тогда для произвольной массы газа получим Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа (см. (52.2)) при увеличения объема от V1 до V2 равна и определяется площадью заштрихованного прямоугольника (рис. 82). Если испо­льзовать уравнение (42.5) Клапейрона — Менделеева для выбранных нами двух состояний, то откуда Тогда выражение (54.2) для работы изобарного расширения примет вид Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2T1 =1 К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К.В изобарном процессе при сообщении газу массой т количества теплоты его внутренняя энергия возрастает на величину (согласно формуле (53.4)) При этом газ совершит работу, определяемую выражением (54.3). Изотермический процесс (T=const). Как уже указывалось, изотермический процесс описывается законом Бойля—Мариотта: Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис. 60), расположенную на диаграмме тем выше, чем выше температура, при которой происходит процесс.Исходя из выражений (52.2) и (42.5) найдем работу изотермического расширения газа: Так как при Т=const внутренняя энергия идеального газа не изменяется: то из первого начала термодинамики (Q=dU+A) следует, что для изотермического процесса т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил: Следовательно, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.