Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
526131_097C1_otvety_na_ekzamenacionnye_voprosy_...docx
Скачиваний:
63
Добавлен:
24.09.2019
Размер:
227.21 Кб
Скачать
  1. Материалы высокой проводимости.

По величине проводимости проводники подразделяются на материалы высокой проводимости и материалы высокого сопротивления. К материалам высокой проводимости относятся серебро Аg, медь Cu и её сплавы – бронзы и латуни, алюминий Аl, железо Fe и его сплавы, а также золото Аu, платина Рt, хром Сr и ряд других. Они используются для изготовления проводов и кабелей.

Самой высокой проводимостью обладает серебро: ρ = 0,016 мкОм.м, ТКρ = 3,6.10-3, Тпл = 960 оС, плотность 10500 кг/м3, до 200 оС устойчиво к окислению. Для предохранения от коррозии серебро покрывают лаком или другим металлом – палладием Рd. Как и все благородные металлы, серебро отличается высокой пластичностью, позволяющей получать фольгу и проволоку диаметром до 0,01 мкм, использующейся при небольших токах. Предел прочности при растяжении σр ≈ 200 МПа, удлинение при разрыве ≈ 50%. Серебро по сравнению с медью и алюминием находит ограниченное применение: в сплавах с медью, никелем или кадмием – для контактов в реле и в других приборах на небольшие токи, в припоях ПСр – 10; ПСр – 25 и др., в виде пасты для непосредственного нанесения на диэлектрики.

Проводниковая медь. Электролитическая медь красновато-оранжевого цвета, чистотой 99,9 (марка М1) и температурой плавления Тпл = 1083 оС имеет ρ = 0,018. Медь достаточно устойчива к атмосферным воздействиям, но при температурах выше 800 оС происходит интенсивное окисление. В присутствии СО2 продуктом окисления является основной карбонат меди по составу близкий малахиту. Иногда для борьбы с коррозией медь покрывают серебром. В зависимости от метода получения проволоки её свойства могут существенно отличаться. При холодной протяжке получают твёрдую (твёрдотянутую) медь (МТ), которая, благодаря влиянию наклёпа имеет высокий предел прочности при растяжении (360 – 390 МПа) и малые относительное удлинение перед разрывом (0,5 – 2,5 %), твёрдость и упругость при изгибе. Если же медь подвергать отжигу, т.е. нагреву до нескольких сот градусов с последующим охлаждением, то получится мягкая (отожжённая) медь (ММ), которая сравнительно пластична, имеет малую твёрдость и небольшую прочность (260 – 280 МПа), но большое удлинение при разрыве (18 – 35 %) и более высокую удельную проводимость.

Медные электротехнические сплавы – это бронзы и латуни. Бронзы содержат небольшие количества олова Sn, кремния Si, фосфора P, бериллия Be, хрома Cr, магния Mg, кадмия Cd, алюминия А1 и др. Они обладают более высокой прочностью (800 -1350 МПа), но меньшей проводимостью. Введение в медь кадмия значительно повышает механическую прочность и твёрдость при незначительном снижении проводимости. Самую большую прочность имеет бериллиевая бронза (2 % Ве) - 1350 МПа, но проводимость по сравнению с медью уменьшается в 5 – 10 раз. Из проводниковых бронз изготавливают провода для линий электрического транспорта, пластины для коллекторов электрических машин, токопроводящие пружины и контактные упругие детали для электрических приборов.

Латуни – это медные сплавы, содержащие до 45 % цинка и малые количества Al, Fe, Mn, Si, Sn, Pb. Прочность латуней увеличивается приблизительно в 2 раза, а удельное сопротивление – на 40 %.

Алюминий обладает достаточно высокой проводимостью (ρ = 0,028 мкОм.м) и стойкостью к коррозии, которая обеспечивается самопроизвольном образованием защитной оксидной плёнки Аl2О3 с большим электрическим сопротивлением. Плотность алюминия (2700 кг/м3) в 3,5 раза меньше, чем плотность меди, а ρ больше всего в 1,63 раза, поэтому для изготовления проводов одной и той же проводимости на единицу длины использовать алюминий выгоднее, чем медь, - его требуется меньше. Удельное сопротивление алюминия резко возрастает в присутствии примесей Мg, Mn, Fe, прочность при растяжении – 90 – 170 МПа и удлинение при разрыве 0,5 – 25%. Достоинство алюминия, заключающееся в наличии на поверхности защитного оксидного слоя, является и его недостатком, т.к. создаёт большое переходное сопротивление в местах контакта, затрудняет пайку обычными методами. С другой стороны этот слой оксида позволяет использовать алюминиевую проволоку без изолирующего лакового покрытия в слаботочных трансформаторах. К недостаткам алюминия относится также и значительная термо-ЭДС в контакте с медью.

Железо (стали) имеют ρ ≈ 0,1 мкОм.м, но зато высокую прочность (σр = 1200 – 1500 МПа) и используется для изготовления проводов воздушных линий электропередачи, биметаллической проволоки типа «ядро – оболочка» с медной оболочкой.

Для повышения электростабильности, коррозионной стойкости, снижения термо-ЭДС в радиоэлектронике и микроэлектронике в качестве материалов высокой проводимости используют также золото, платину, хром.