Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
молекула.doc
Скачиваний:
31
Добавлен:
24.09.2019
Размер:
5.47 Mб
Скачать

23. Метод термодинамический функций (свободная энергия и термодинамический потенциал Гиббса).

Термодинамические потенциалы (термодинамические функции) — характеристическая функция в термодинамике, убыль которых в равновесных процессах, протекающих при постоянстве значений соответствующих независимых параметров, равна полезной внешней работе.

Термин был введён Пьером Дюгемом, Гиббс в своих работах использовал термин «фундаментальные функции».

Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины — температуру, давление и объём и их производные.

Свободная энергия Гельмгольца (или просто свободная энергия) — термодинамический потенциал, убыль которого в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

Свободная энергия Гельмгольца для системы с постоянным числом частиц определяется так:

  • , где Uвнутренняя энергия, T — абсолютная температура, Sэнтропия.

Отсюда дифференциал свободной энергии равен:

Видно, что это выражение является полным дифференциалом относительно независимых переменных T и V. Поэтому часто свободную энергию Гельмгольца для равновесного состояния выражают как функцию .

Для системы с переменным числом частиц дифференциал свободной энергии Гельмгольца записывается так:

  • ,

где μ — химический потенциал, а N — число частиц в системе. При этом свободная энергия Гельмгольца для равновесного состояния записывается как функция .

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это термодинамический потенциал следующего вида:

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамике и химии.

Классическим определением энергии Гиббса является выражение

где U — внутренняя энергия, P — давление, V — объем, T — абсолютная температура, S — энтропия.

Дифференциал энергии Гиббса для системы с постоянным числом частиц:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь μ — химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

24.Критерии устойчивости термодинамических систем. Принцип Ле-Шателье—Брауна. Общие критерии термодинамической устойчивости

Допустим, что адиабатически изолированная система находится в термодинамическом равновесии, причем ее энтропия S в рассматри­ваемом состоянии максимальна, т. е. больше энтропий всех возможных бесконечно близких состояний, в которые система может перей­ти без подвода или отвода тепла. Тогда можно утверждать, что самопроизвольный адиабатический переход системы во все эти со­стояния невозможен, т. е. система находится в устойчивом термодинамическом равновесии. Действительно, если бы такой переход был возможен, то энтропии начального 1 и конечного 2 состояний были бы связаны соотношением . Но это соотношение находится в противоречии с принципом возрастания энтропии, согласно которому при адиабатических переходах должно быть . Таким образом, мы приходим к следующему критерию термодина­мической устойчивости.

Если система адиабатически изолирована и ее энтропия в не­котором равновесном состоянии максимальна, то это состояние являемся термодинамически устойчивым. Это значит, что система, оставаясь адиабатически изолированной, не может самопроизвольно перейти ни в какое другое состояние.

В приложениях термодинамики к конкретным вопросам часто бывает удобно вместо адиабатической изоляции системы накладывать на ее поведение другие ограничения. Тогда критерии термодинамической устойчивости изменятся. Особенно удобны следующие критерии.

Критерий устойчивости для системы с постоянными объемом и энтропией.

Принимая во внимание соотношение и первое начало термодинамики, можно написать:

(1)

При постоянстве энтропии и объема это дает

(2)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением внутренней энергии. Следовательно, устойчивым является состояние при минимуме внутренней энергии.

Критерий устойчивости для системы с постоянными давлением и энтропией. В этом случае условие (1) имеет вид

(3)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением энтальпии Следовательно, устойчивым является состояние при минимуме энтальпии.

Критерий устойчивости для системы с постоянными объемом и температурой. При и неравенство (1) записывается в виде

(4)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением свободной энергии Следовательно, устойчивым является лишь состояние при минимуме свободной энергии.

Критерий устойчивости для системы с постоянными температурой и давлением. С помощью выражения для термодинамического потенциала неравенство (1) преобразуется к виду

(5)

При постоянных температуре и давлении дифференциалы и (5) сводятся к неравенству

(6)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением термодинамического потенциала. Следовательно, устойчивым является состояние при минимуме термодинамического потенциала Гиббса.