Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_2.docx
Скачиваний:
16
Добавлен:
25.09.2019
Размер:
437.53 Кб
Скачать

Устройство машин постоянного тока

Машина постоянного тока состоит из двух основных частей: неподвижной – статора и вращающейся – ротора, называемого в машинах постоянного тока якорем. Статор состоит из станины(составляет основу всей машины и выполняет функцию магнитопровода) 1, главных полюсов(служат для создания постоянного во времени и неподвижного в пространстве магнитного поля) 2, дополнительных полюсов 3, подшипниковых щитов 4 и щеточной траверсы со щетками 6.

Устройство якоря.

Вращающаяся часть машин – якорь 9 (рис. 1.1, 1.2, а, б) состоит из сердечника 7, обмотки 8 и коллектора 5.

Принцип действия машин постоянного тока

К коллектору подключается источник постоянного напряжения. В результате через обмотку якоря потечёт ток. Взаимодействие тока с магнитным полем обмотки возбуждения создаст электромагнитные силы, приводящие якорь во вращение.

Мощность и потери. Характер подводимой к машине мощности зависит от ее режима работы: у генераторов это механическая мощность P1 = k1Mn, у двигателей – электрическая мощность P1 =UI. Характер снимаемой с машины полезной мощности – противоположный: у генератора это электрическая мощность P2 = UI, у двигателя – механическая P2=k2Mn. В машине всегда есть мощность потерь ∆Р

КПД машины. КПД машины можно рассчитать по формуле

η = P 2 / P1. При экспериментальном определении КПД проще и, главное, точнее измерять не механическую мощность, а электрическую, и рассчитывать потери. Поэтому для определения КПД генератора пользуются формулой

η = P2 / (P2 + ∆Р)

и КПД двигателя

η = (P1 -  ∆Р) / Р1.

КПД машин постоянного тока растет с увеличением мощности машин. Так, у микромашин мощностью до 0,1 кВт он составляет всего 30 – 40 %, у машин мощностью 10 кВт – 83 % и у машин 1000 кВт  -  96 %.

КПД меняется также в зависимости от нагрузки (рис. 1.15). Из графика следует, что при малых нагрузках КПД резко падает, поэтому недогруженную машину невыгодно эксплуатировать.

10. Электрические машины переменного тока: устройство и принцип действия машин переменного тока; механические характеристики и кпд машин переменного тока.

Элетрическая машина переменного тока представляет собой электромеханическую систему, состоящую из неподвижного статора с расположенными на нем статорными обмотками и вращающегося ротора с расположенными на нем роторными обмотками.

Электрические машины переменного тока разделяются на два класса: синхронные машины, которые преимущественно применяются как генераторы переменного тока, и асинхронные машины, используемые в основном в качестве двигателей переменного тока.

Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Принцип действия

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться.

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Рис. 4.1. Конструктивная схема вращающейся электрической машины:

/ — статор; 2 — обмотка статора; 3— воздушный зазор; 4 — ротор; 5 — обмотка ротора; 6 — подшипники; 7—подшипниковые щиты; 8 — вал ротора; 9—вентилятор; 10 — станина

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]