Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
obshaya_mikrobiologia.doc
Скачиваний:
4
Добавлен:
26.09.2019
Размер:
9.12 Mб
Скачать

Принципы составления сред для культивирования

микроорганизмов.

Для культивирования микроорганизмов применяют питательные среды, которые должны содержать все вещества, необходимые для их роста. Предложены сотни различных сред для культивирования микроорганизмов, состав которых определяется потребностями микроорганизмов в соединениях, необходимых для биосинтеза и получения энергии. Конструктивные и энергетические процессы у микроорганизмов крайне разнообразны, поэтому столь же разнообразны их потребности в питательных веществах. Из этого следует, что универсальных сред, одинаково пригодных для роста всех без исключения микроорганизмов, не существует.

Основные типы питательных сред

По составу принято выделять естественные или натуральные среды неопределенного состава и синтетические среды.

Естественными (натуральными) называют среды, которые состоят из продуктов животного или растительного происхождения. К таким средам относятся овощные или фруктовые соки, животные ткани, молоко, отвары или экстракты, полученные из природных субстратов и т.д. На натуральных средах хорошо развиваются многие микроорганизмы, поскольку такие среды содержат все компоненты, необходимые для роста и развития. Однако эти среды имеют сложный, непостоянный химический состав и мало пригодны для изучения обмена веществ микроорганизмов, так как них трудно учесть потребление ряда компонентов и образования продуктов метаболизма. Натуральные среды используются главным образом для поддержания культур микроорганизмов, накопления биомассы и для диагностических целей. К числу натуральных сред, широко применяемых в лабораторной практике, относятся мясо-пептонный бульон, неохмеленное пивное сусло, дрожжевая и картофельная среды, почвенный экстракт.

Синтетические среды - это среды, в которые входят лишь соединения определенного химического состава, взятые в точно указанных количествах. Синтетические среды широко используются при исследовании обмена веществ, физиологии и биохимии микроорганизмов. Для разработки состава синтетических сред, обеспечивающих рост микроорганизмов или усиленный биосинтез какого-либо продукта жизнедеятельности, необходимо знать особенности обмена веществ данного организма и потребности его в источниках питания. В настоящее время в распоряжении микробиологов имеется достаточное количество синтетических сред, не уступающих по своим качествам натуральным средам неопределенного состава. Синтетические среды могут иметь относительно большой набор компонентов, но могут быть и довольно простыми по составу.

Наряду с натуральными и синтетическими средами выделяют так называемые полусинтетические среды. Главными компонентами полусинтетических сред являются соединения известного химического состава - углеводы, соли аммония, фосфаты и т.д. Однако в их состав всегда включаются вещества неопределенного состава, такие как дрожжевой автолизат, почвенный экстракт или гидролизат казеина. Эти среды находят широкое применение в промышленной микробиологии для получения аминокислот, витаминов, антибиотиков и других важных продуктов жизнедеятельности микроорганизмов.

По назначению различают элективные и дифференциально-диагностические (индикаторные) среды.

Элективные среды предназначены для выделения микроорганизмов из мест их естественного обитания. Они обеспечивают преимущественное развитие определенной группы микроорганизмов, для которой характерна общность физиологических свойств.

Дифференциально-диагностические среды (индикаторные) дают возможность быстро отличить одни виды микроорганизмов от других или выявить некоторые их особенности. Примером индикаторной среды для выявления кишечной палочки в естественных субстратах может служить агарированная среда Эндо. Бактерии из рода Escherichia на этой среде образуют розовые и малиновые колонии с металлическим блеском, а бактерии рода Salmonella - бесцветные.

Дифференциально-диагностические среды особенно широко применяются в санитарной и медицинской микробиологии для быстрой идентификации определенных групп микроорганизмов.

По физическому состоянию различают жидкие, сыпучие и плотные среды.

Жидкие среды широко применяют для выяснения физиолого-биохимических особенностей микроорганизмов, для накопления биомассы или продуктов обмена, а также поддержания и хранения многих микроорганизмов, плохо развивающихся на плотных средах.

Сыпучие среды применяют главным образом в промышленной микробиологии для культивирования некоторых продуцентов физиологически активных соединений, а также в коллекциях для сохранения культур микроорганизмов. К таким средам относятся, например, разваренное пшено, отруби и др.

Плотные среды используются для выделения чистых культур, в диагностических целях для описания колоний, для определения количества микроорганизмов, их антибиотической активности, для хранения культур в коллекции и в ряде других случаев. С целью уплотнения сред применяют агар или желатин. Плотной основой могут служить пластинки силикагеля, которые пропитывают питательной средой.

Наиболее часто для уплотнения питательных сред применяют агар, представляющий собой сложный полисахарид, в состав которого входит агароза и агаропектин. Агар получают из водорослей и выпускают в виде пластин, стебельков или порошка. Большинство микроорганизмов не используют его в качестве субстрата для роста. В воде он образует гель, который плавится примерно при 1000С и затвердевает при температуре 400С .

Желатин - это экстракт, получаемый из субстратов, богатых коллагеном - белком костей, хрящей, сухожилий, чешуи. Образуемый желатином гель плавится при температуре 250С, которая ниже обычной температуры инкубации многих микроорганизмов (30-370С). Кроме того, желатин разжижается протеолитическими ферментами, которые многие микроорганизмов выделяют в среду. Эти свойства желатина ограничивают ее применение в качестве уплотняющего средства. Желатин используют главным образом в диагностических целях - для выявления протеолитической активности микроорганизмов, а также для получения гигантских и глубинных колоний дрожжей.

Плотной основой могут служить пластинки силикагеля, который является веществом неорганической природы.

Способы культивирования микроорганизмов.

Культивирование микроорганизмов можно поводить поверхностным или глубинным, периодическим или непрерывным методами, в аэробных или анаэробных условиях. Большое значение при выборе способа культивирования имеет отношение выбранного для культивирования микроорганизма к молекулярному кислороду и конечная цель культивирования: накопление биомассы или получение определенного метаболита (спирта, кислорода, фермента и т.д.).

При культивировании поверхностным способом микроорганизмы выращивают на поверхности плотной, сыпучей среды или в тонком слое жидкой среды, при этом микроорганизмы получают кислород непосредственно из воздуха. В жидких средах аэробные микроорганизмы часто растут, образуя на поверхности пленку. Факультативные анаэробы развиваются не только на поверхности, но и в толще жидкой среды, вызывая более или менее равномерное ее помутнение. На сыпучих средах поверхностным методом получают ферментные препараты. Поверхностное культивирование микроорганизмов применяется как в лабораторных условиях, так и в промышленности

Все способы культивирования аэробных микроорганизмов сводятся к увеличению поверхности соприкосновения питательной среды с кислородом воздуха. При глубинном культивировании в жидких средах микроорганизмы используют растворенный кислород. Вместе с тем растворимость кислорода в воде невелика, поэтому, чтобы обеспечить рост аэробных микроорганизмов в толще среды, ее необходимо постоянно аэрировать (подводить кислород в глубь жидкой среды). Сочетание питательной среды и растущих в ней микроорганизмов называют культуральной жидкостью.

Наиболее широко распространенный в лабораторной практике способ глубинного культивирования - выращивание на качалках, обеспечивающих встряхивание или вращение колб или пробирок, обеспечивая большее соприкосновение среды с воздухом и насыщение ее кислородом. Аэрировать культуру микроорганизмов можно продуванием (барботированием) через толщу среды стерильного воздуха. Этот способ используется в лабораторных исследованиях, но особенно широкое применение он нашел в промышленной микробиологии при получении биомассы, в производстве антибиотиков, ферментов, кислот.

Преимущества глубинного культивирования заключаются в том, что этот способ не требует больших площадей и громоздкого оборудования, объем ферментаторов можно увеличить за счет увеличения высоты, простота обслуживания, возможность автоматизации, удобство выделения целевого продукта из культуральной жидкости.

Глубинное культивирование микроорганизмов может быть периодическим и непрерывным. При периодическом методе культивирования весь объем питательной среды засевают чистой культурой, и выращивание ведут в оптимальных условиях определенный период времени до накопления нужного количества целевого продукта. Поскольку культивирование ведется на невозобновляемой питательной среде (в стационарных условиях), клетки все время находятся в меняющихся условиях. Сначала они имеют в избытке все питательные вещества, затем постепенно наступает недостаток питания и отравление вредными продуктами обмена. В связи с этим культура в своем развитии проходит четыре фазы роста и размножения, в течение которых изменяются размеры клеток, скорость размножения, морфологические и физиологические свойства (рис. 3.1).

Первая стадия - лаг-фаза, или фаза задержки роста, следует непосредственно за внесением посевного материала в питательную среду. В этой фазе микроорганизмы не размножаются, а приспосабливаются к среде, происходит повышение содержания нуклеиновых кислот, увеличение размера. Эта стадия является подготовкой к дальнейшему интенсивному синтезу белка клеткой, т.е. ее росту и размножению.

Вторая стадия - фаза логарифмического роста(экспоненциальная) характеризуется высокой скоростью размножения клеток, так как в среде много питательных веществ и мало вредных продуктов обмена. Время, необходимое для удвоения числа клеток, называется продолжительностью генерации. В благоприятных условиях клетки бактерий делятся каждые 20-30 мин, их число увеличивается в геометрической прогрессии (1, 2, 4, 8, 16 и т.д.).

Третья стадия - стационарная (фаза зрелости), когда размножение микроорганизмов замедляется, и скорости размножения и отмирания уравновешиваются, в результате чего число клеток остается постоянным.

Четвертая стадия - фаза отмирания, когда начинается гибель клеток и их количество снижается за счет отмирания и автолиза (самопереваривания).

Рис. 3.1 Закономерность роста чистой культуры микроорганизма

а - лаг-фаза; б - логарифмическая фаза; в - стационарная фаза; г- фаза отмирания.

Периодическое культивирование осуществляется во многих производствах, основанных на жизнедеятельности микроорганизмов. Недостатком периодического культивирования являются нерациональные затраты времени на прохождение всех четырех стадий развития культуры, причем период самой активной жизнедеятельности - фаза логарифмического роста - занимает небольшую часть производственного цикла.

В течение последних тридцати лет все большее значение приобретает более прогрессивный метод непрерывного культивирования микроорганизмов, который состоит в том, что культура находится в специальном аппарате, куда постоянно притекает свежая питательная среда и с такой же скоростью отводиться культуральная жидкость. Посевной материал выращивается до стадии логарифмического роста и вносится в питательную среду. Длительность периода логарифмического роста зависит от количества питательных веществ в среде, а также от количества вредных продуктов обмена, выделяемых клеткой.

При большой скорости притока среда быстро обновляется, питательные вещества не успевают накопиться и культура поддерживается сколь угодно долго в активном состоянии, не достигая стадии отмирания. Несмотря на значительное аппаратное усложнение технологического процесса, метод непрерывного культивирования имеет ряд преимуществ по сравнению с периодическим способом.

В последние годы активно разрабатывается и применяется метод непрерывного культивирования клеток микроорганизмов в иммобилизованном (прикрепленном) состоянии - на пленках, гранулах, волокнах специально подобранных синтетических полимерных материалов. Иммобилизованные клетки микроорганизмов функционируют многократно и в течение длительного времени сохраняют высокую биохимическую активность.

Непрерывное культивирование очень перспективно и широко используется в пищевой и микробиологической промышленности и создает возможность автоматического поддержания заданных оптимальных условий, благодаря чему обеспечивается стандартность готового продукта при наименьших затратах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]