Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛИНЕЙНАЯ АЛГЕБРА ОТВЕТЫ.doc
Скачиваний:
10
Добавлен:
27.09.2019
Размер:
17.95 Mб
Скачать

Вопрос 4.

Определение скалярного произведения

Скалярным произведением двух ненулевых векторов а и b называетсячисло, равное произведению длин этих векторов на косинус угла междуними.

Обозначается ab,а* b(или( а, b)).Итак, по определению,

 

Формуле   (6.1)   можно   придать   иной   вид.   Так   как |a| cos=пр ba, (см. рис.14), a |b| cos = пр ab, то получаем:

     

 т. е. скалярное произведение двух векторов равно модулю одного из них, умноженному на проекцию другого на ось, сонаправленную с первым вектором.

Свойства скалярного произведения

    1. Скалярное произведение обладает переместительным свойством: ab=ba

 

Решение:                                                             

5. Если векторы а и b(ненулевые) взаимно перпендикулярны, то их скалярное произведение равно нулю, т. е. если ab, то ab=0. Справедливо и обратное утверждение: если ab=0 и а 0b, то а b

.

Выражение скалярного произведения через координаты

Пусть заданы два вектора

Найдем скалярное произведение векторов, перемножая их как многочлены (что законно в силу свойств линейности скалярного произведения) и пользуясь таблицей скалярного произведения векторов i, j, k:

  

    т.е

Итак, скалярное произведение векторов равно сумме произведений их одноименных координат.

Пример 6.2.

Доказать, что диагонали четырехугольника, заданного координатами вершин А(-4;-4;4), В(-3;2;2),C(2; 5;1), D(3;-2;2), взаимно перпендикулярны.

Решение: Составим вектора АС и BD, лежащие на диагоналях данного четырехугольника. Имеем: АС = (6;9;-3) и BD = (6;-4;0). Найдем скалярное произведение этих векторов:

АС • BD = 36 - 36 - 0 = 0.

Отсюда следует, что ACBD. Диагонали четырехугольника ABCD взаимно перпендикулярны.

Вопрос 5.

Направляющие косинусы вектора. Направляющие косинусы единичного вектора. Примеры.

Углы, образуемые вектором   с координатными осями OxOy и Oz, определяются из формул (3) и (4):

           

     (13)

           

Косинусы, определяемые по этим формулам, называются направляющими косинусами вектора  .

Для направляющих косинусов вектора имеет место формула

     (14)

т. е. сумма квадратов косинусов углов, образуемых вектором с тремя взаимно перпендикулярными осями, равна единице.

Если  , т. е. если   - единичный вектор, обозначаемый обыкновенно  , то его проекции на координатные оси вычисляются по формулам

     (15)

т. е. проекции единичного вектора   на оси прямоугольной системы координат OxOy и Oz равны соответственно направляющим косинусам этого вектора. Имеет место формула

     (16)

Если даны два вектора

то 

и

     (17)

Как найти направляющие косинусы вектора

Обозначьте через альфа, бета и гамма углы, образованные вектором а с положительным направлением координатных осей (см. рис.1). Косинусы этих углов называются направляющими косинусами вектора а.

Инструкция

1

Так как координаты а в декартовой прямоугольной системе координат равны проекциям вектора на координатные оси, то а1 = |a|cos(альфа), a2 = |a|cos(бета), a3 = |a|cos(гамма). Отсюда: cos (альфа)=a1||a|, cos(бета) =a2||a|, cos(гамма)= a3/|a|. При этом |a|=sqrt(a1^2+ a2^2+ a3^2). Значит cos (альфа)=a1|sqrt(a1^2+ a2^2+ a3^2), cos(бета) =a2|sqrt(a1^2+ a2^2+ a3^2), cos(гамма)= a3/sqrt(a1^2+ a2^2+ a3^2).

2

Следует отметить основное свойство направляющих косинусов. Сумма квадратов направляющих косинусов вектора равна единице. Действительно, cos^2(альфа)+cos^2(бета)+cos^2(гамма)= = a1^2|(a1^2+ a2^2+ a3^2)+ a2^2|(a1^2+ a2^2+ a3^2)+ a3^2/(a1^2+ a2^2+ a3^2) = =(a1^2+ a2^2+ a3^2)|(a1^2+ a2^2+ a3^2) = 1.

3

Первый способ

Пример: дано: вектор а={1, 3, 5). Найти его направляющие косинусы. Решение. В соответствии с найденным выпишем: |а|= sqrt(ax^2+ ay^2+ az^2)=sqrt(1+9 +25)=sqrt(35)=5,91. Таким образом, ответ можно записать в следующей форме: {cos(альфа), cos(бета), cos(гамма)}={1/sqrt(35), 3/sqrt (35), 5/(35)}={0,16;0,5;0,84}.

4

Второй способ

При нахождении направляющих косинусов вектора а, можно использовать методику определения косинусов углов с помощью скалярного произведения. В данном случае в виду имеются углы между а и направляющими единичными векторами прямоугольных декартовых координат i, j и k. Их координаты {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, соответственно. Следует напомнить, что скалярное произведение векторов определяется так.

Если угол между векторами ф, то скалярное произведение двух ветров (по определению) – это число, равное произведению модулей векторов на cosф. (a, b) = |a||b|cos ф. Тогда, если b=i, то (a, i) = |a||i|cos(альфа), или a1 = |a|cos(альфа). Далее все действия выполняются аналогично способу 1, с учетом координат j и k.