Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие для 3 семестра.DOC
Скачиваний:
11
Добавлен:
13.11.2019
Размер:
2.05 Mб
Скачать

Электромагнитные волны

Электромагнитная волна – процесс распространения в пространстве электромагнитного поля. Как говорилось ранее, математическое описание электромагнитных волн аналогично описанию механических волн, таким образом, необходимые уравнения можно получить, заменив в формулах (30) – (33)  на или , где –напряженности электрического и магнитного полей. Например, уравнения плоской электромагнитной волны выглядят следующим образом:

. (38)

Волна, описываемая уравнениями (38), показана на рис. 5.

Как видно, векторы и образуют с вектором правовинтовую систему. Колебания этих векторов происходят в одинаковой фазе. В вакууме электромагнитная волна распространяется со скоростью света С = 3108 м/с. В веществе фазовая скорость

Рис. 5

электромагнитной волны равна , (39) где  – относительная диэлектрическая проницаемость,  – относительная магнитная проницаемость вещества.

Величина называется при этом абсолютным показателем преломления вещества. Вектор плотности потока энергии электромагнитной волны носит название вектора Пойнтинга . В соответствии с равенством (36 )

, где w – плотность энергии электромагнитной волны. Кроме того, вектор можно представить в виде: , (40)

а интенсивность электромагнитной волны в соответствии с (37)

I = < S > (41)

Электромагнитная волна, падая на вещество, оказывает на него давление, которое выражается формулой P = <w>(1+) , (42)

где  – коэффициент отражения.

Волновая оптика

Волновая оптика рассматривает круг явлений, связанных с распространением света, которые можно объяснить, представляя свет как электромагнитную волну.

Основное понятие волновой оптики – световая волна. Под световой волной понимают электрическую составляющую электромагнитной волны, длина волны которой в вакууме 0 лежит в пределах 400 – 700 нм. Такие волны воспринимает человеческий глаз. Уравнение плоской световой волны можно представить в виде

E = Acos(t – kx + 0) , (43)

где А – принятое обозначение амплитуды светового вектора Е, 0 – начальная фаза (фаза при t = 0, x = 0).

В среде с показателем преломления n фазовая скорость световой волны равна  = c/n, а длина волны  = 0/n . (44)

Интенсивность световой волны, как следует из (41), определяется средним значением вектора Пойнтинга I = < S >, и можно показать, что

I  A2 , (45)

т.е. пропорциональна квадрату амплитуды световой волны.