Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метод. лекции.doc
Скачиваний:
7
Добавлен:
18.11.2019
Размер:
1.88 Mб
Скачать

1.18 Тела вращения

Рассмотрим некоторые из многочисленных поверхностей вращения.

Поверхности, образованные вращением прямой линии. К таковым относятся цилиндр и конус.

Цилиндр вращения – поверхность, полученная вращением прямой вокруг параллельной ей оси и ограниченная двумя взаимно параллельными плоскостями.

Конус вращения – поверхность, образованная вращением прямой (образующая) вокруг пересекающейся с ней осью (направляющая).

Примером поверхностей, образованных вращением окружности вокруг неподвижной оси является сфера.

Сфера – поверхность, полученная вращением окружности вокруг ее диаметра.

Сечение цилиндра плоскостью. При сечении цилиндра вращения плоскостью, параллельной оси вращения, в сечении получается пара прямых (образующих). Если секущая плоскость перпендикулярна к оси вращения, в сечении получается окружность. В общем случае, когда секущая плоскость наклонена к оси вращения цилиндра, в сечении получается эллипс.

Рис. 1.84

На рисунке 1.84 показан пример построения проекций линии сечения цилиндра фронтально проецирующей плоскостью Q, когда в сечении получается эллипс.

Фронтальная проекция фигуры сечения в этом случае совпадает с фронтальным следом плоскости, а горизонтальная – с горизонтальной проекцией поверхности цилиндра – окружностью. Профильная проекция строится по двум имеющимся проекциям – горизонтальной и фронтальной, замеряя игрековые координаты точек относительно оси цилиндра и откладывая их на проекционных линиях связи соответствующих точек.

Сечение конуса плоскостью. В зависимости от положения секущей плоскости в сечении конуса вращения могут получиться различные линии, называемые линиями конических сечений.

Если секущая плоскость проходит через вершину конуса перпендикулярно его основанию, то в сечении получается пара прямых – образующих (треугольник – рис. 1.85а). В результате пересечения конуса плоскостью, перпендикулярной к оси конуса, получается окружность (рис. 185б). Если секущая плоскость наклонена к оси вращения конуса и не проходит через ее вершину, в сечении конуса могут получиться эллипс (секущая плоскость пересекает все образующие конуса – рис. 1.85в). Парабола образуется, если секущая плоскость параллельна одной из образующих конуса (рис. 1.85г). Гипербола образуется в случае, если секущая плоскость параллельна двум образующим конуса в зависимости от угла наклона секущей плоскости к основанию конуса (рис. 1.85д).

а б в г д

Рис. 1.85

Известно, что точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности. Для конуса графически наиболее простыми линиями являются образующие и окружности. Следовательно, если по условию задачи требуется найти горизонтальные проекции точек, принадлежащих поверхности конуса, то нужно через точки провести одну из этих линий.

На рисунке 1.86 дан пример построения проекций линии сечения конуса фронтально проецирующей плоскостью, когда в сечении получается эллипс.

Фигура сечения на фронтально плоскости совпадает со следом секущей плоскости. Обозначим характерные точки (точки, принадлежащие фронтальному очерку конуса – 1, 6 и 4, 5 – точки, принадлежащие профильному очерку конуса) и несколько промежуточных (чем больше будет отмечено таких точек, тем точнее получится фигура сечения – эллипс). Горизонтальные и профильные проекции точек 1,4,5,6, находятся без дополнительных построений, так как они принадлежат соответствующим очеркам конуса. Для точек 4 и 5 находятся их профильные проекции из условия принадлежности их профильному очерку конуса, а затем, измерив игрековую координату этих точек от оси конуса, отмечаются их горизонтальные проекции. Для нахождения проекций промежуточных точек можно воспользоваться методом проведения секущих плоскостей, параллельных основанию конуса или проведением через отмеченные точки образующих конуса с последующим нахождением горизонтальных проекций этих образующих и нахождением на них соответствующих точек. Далее по двум полученным проекциям строятся третью проекции отмеченных точек. Полученные проекции точек соединяются плавной кривой с учетом видимости (на примере верхняя часть конуса отсечена плоскостью Q и поэтому вся фигура сечения на профильной плоскости видна). Если такого отсечения не происходит, то на профильной проекции часть кривой сечения 465 изобразится невидимой линией.

Рис. 1.86

Конус с вырезом. На рисунке 1.87 показан конус, в котором выполнен вырез, образованный тремя плоскостями частного положения, образующих призматический вырез. Фронтальная проекция фигуры сечения совпадает с очерком призматического выреза. Для нахождения горизонтально и профильной проекций выреза отмечаем ряд необходимых точек. Необходимо отметить характерные точки, принадлежащие очеркам конуса, точки перегиба плоскостей выреза и ряд промежуточных для точности построения определенных кривых.

В данном случае отмечаются точки 5,6 и 11,12 , принадлежащие профильному очерку конуса; точки 1, 2, 3, 4, 9,10, являющиеся ребрами (линии перегиба плоскостей выреза) призматического выреза. Для более точного построения части параболы необходимо отметить ряд точек (чем их будет больше, тем точнее получится кривая) находящихся между точками 3, 9 и 4, 10 (в данном случае это точки 7 и 8). Для построения части выреза, в результате которого образуется часть гиперболы, отмечаются точки, находящиеся между точками 1 и 3, 2 и 4 (в данном случае это точки 13 и 14). Их также необходимо взять достаточное количество.

Построив горизонтальные и профильные проекции отмеченных точек, фигуры проекций выреза соединяются с учетом видимости. На горизонтальной плоскости линии входа и выхода призматического выреза конуса видны. На профильной проекции видимость определяется по граничным точкам 5, 6 и 11, 12. Линия 5, 7, 9, 11 и 6, 8, 10, 12 на профильной проекции не видна, но, учитывая форму выреза, куски линии 5, 7 и 6, 8 до линий 3, 13 и 4, 14 будут видны.

Рис. 1.87