Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сборник лаб. работ.doc
Скачиваний:
28
Добавлен:
24.11.2019
Размер:
16.73 Mб
Скачать

Раздел 5. Основы научных исследований

И ТЕХНИКА ЭКСПЕРИМЕНТА

Лабораторная работа № 1

МЕТОДЫ ИЗМЕРЕНИЯ ВЫСОКИХ ТЕМПЕРАТУР

1. Цель работы

Изучить методы измерения высоких температур, используемые при исследованиях процессов сварки и пайки. Получить практические навыки по изготовлению и градуировке термопар.

2. Методы измерения температур и краткие сведения

О ТЕРМОПАРАХ

Ни одно современное исследование в области сварки и пайки невозможно без оценки температуры опыта. Во многих случаях точность измерения температуры определяет погрешность всего исследования. Международная практическая шкала температур основана на шести реперных температурных точках, соответствующих фазовым переходам кислорода, воды, серы, серебра и золота. Приборы, с помощью которых производят измерения температуры, называются термометрами. По принципу действия термометры разделяют на несколько основных типов: 1) дилатометрические, основанные на измерении меняющихся с температурой размеров тела; 2) манометрические, основанные на измерении давления, меняющегося в замкнутом пространстве с изменением температуры; 3) сопротивления, основанные на измерении величины электрического сопротивления тела, изменяющегося с температурой; 4) термоэлектрические, основанные на измерении термоэлектродвижущих сил (этот тип термометров обычно называют термопарами); 5) излучения, основанные на измерении теплового или светового потока накаленного тела. В первых четырех типах датчик измерительного инструмента помещается в непосредственной близости к объекту, температура которого измеряется. Термометры излучения являются бесконтактными, для измерения достаточна лишь небольшая видимая площадь поверхности нагреваемого тела.

Использование термометров первых трех типов ограничивается малым верхним пределом температуры. Для измерения и контроля высоких температур наиболее широко используются термопары.

При нагревании двух разнородных проводников появляется ЭДС, являющаяся суммой ЭДС Пельтье, возникающей в спае, и ЭДС Томпсона, возникающей вследствие градиента температур в каждой проволоке. Суммарная ЭДС является функцией температуры для данной пары металлов. Если один спай термопары поддерживать при постоянной температуре, то ЭДС термопары будет функцией температуры, при которой находится другой спай. Для определения термоЭДС в цепь термопары включают измерительный прибор. Рабочий спай обычно называют горячим, а термостатируемый – холодным. Градуировочные зависимости термоЭДС от температуры горячего спая справедливы при температуре холодного спая, равной 0 °С. Если холодный спай не термостатируется при 0 °С, то необходимо ввести поправку, которая будет равна разности ЭДС холодного спая при данной температуре и 0 °С.

При выборе материала для термопар руководствуются следующими требованиями: в интересующем исследователя интервале температур величина термоЭДС должна быть достаточно большой, устойчивой, воспроизводимой, прямо пропорциональной температуре; материалы термопар должны быть стойкими в рабочей среде и сохранять механическую прочность. Характеристики некоторых типов термопар приведены в таблице. Под длительным применением имеется в виду работа термопары до 1000 ч, кратковременным – до 100 ч. За время работы изменение градуировки термопары должно происходить не более чем на 1 %. Для защиты термопары от воздействия среды могут применяться специальные чехлы или наконечники.

Наиболее распространенной термопарой для измерения температур до 1300 °С, в том числе при высокотемпературной пайке является хромель- алюмелевая термопара (ХА). Хромель – это сплав состава: 9…10% Cr; 0,6…1,2% Со; Ni – остальное. Алюмель – сплав состава: 1% Si; 2% Al; 1…2,5% Mn; Ni – остальное.

Термопара имеет высокую термоЭДС, линейно меняющуюся с температурой. Наиболее надежным способом изготовления термопар ХА является сварка (графитовым электродом или в графитовом порошке), предварительно скрученных проволок. Следует отметить, что погрешность термопары с уменьшением величины спая уменьшается.

Недостатком термопары ХА является снижение термоЭДС при работе в окислительной среде вследствие постепенного окисления хрома. Это особенно проявляется у термоэлектродов малого диаметра. В углеродсодержащей среде на термоэлектродах образуются карбиды хрома и никеля, изменяющие градуировку термопары. Поэтому для термопары ХА особенно важна периодическая проверка (градуировка).

Градуировка обычно производится для новой термопары после изготовления, либо после длительной работы термопары. Градуировка может производится сличением с образцовой термопарой, по постоянным реперным точкам или по температуре плавления чистых металлов. Последний метод основан на том, что температура перехода чистого металла из твердого состояния в жидкое и обратно остается постоянной в течение всего процесса перехода. Рекомендуется пользоваться процессом кристаллизации, а не плавления, так как в последнем случае трудно обеспечить достаточно медленное изменение температуры металла.

Таблица 5.1

Характеристики некоторых термопар

Наименование

Обозначение

Верхний рабочий предел температуры

Рабочая среда

Примечание

При длительном применении

При кратковременном применении

Платинородий-платиновая

ПП

1300

1600

Нейтральная, окислительная, вакуум

Платино-родиевые

ПР

1600

1800

То же

Вольфрам-молибденовые

ВМ

2000

Нейтральная, восстановительная, вакуум

Охрупчиваются при высоких температурах

Вольфрам-рениевые

ВР

2500

Вакуум, нейтральная, восстановительная

Пригодны для измерения в условиях ядерного излучения

Хромель-алюмелевые

ХА

900

1300

Восстановительная, инертная, ограничено окислительная

Хромель-копелевая

ХК

600

800

Железо-константовая

Ж

600

800

Медь-константовая

М

350

600

Графит-карбид кремния

200

Нестабильность градуировки, большая тепловая инерция, хрупкость

Графит-борид циркония

ТГБЦ

2000

Инертная, восстановительная

Дисилицид молибдена-дисилицид вольфрама

ТМСВ

1650

Восстановительная, окислительная, расплавленная, соли

Графит-карбид титана

ТГКТ

2500

Восстановительная, нейтральная, вакуум