Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по электронике4.doc
Скачиваний:
237
Добавлен:
02.05.2014
Размер:
1.77 Mб
Скачать

Вопрос 5

Изолированный кристалл n-типа электрически нейтрален. Сумма положительных и отрицательных зарядов в нем равна нулю. Также электрически нейтрален кристалл p-типа

а)б)

в)

Рисунок 10

Сразу после соприкосновения кристаллов начнется диффузия дырок из p-области в n-область и диффузия электронов в обратном направлении. Встречаясь, электроны и дырки рекомбинируют, при этом вблизи граничной области образуется 2 слоя.

p-область приобретает нескомпенсированный отрицательный заряд, то есть слой отрицательных ионов;

n-область приобретает нескомпенсированный положительный заряд. Между двумя разноименно заряженными слоями возникает электрическое поле, называемое запирающим.

Напряженность этого поля препятствует диффузии дырок и электронов (диффузионному току).

При некотором значении напряженности диффузионный ток прекратится. Этому значению напряженности соответствует определенная контактная разность потенциалов и определенная ширина слоя, в котором рекомбинировали подвижные носители зарядов.

В кристалле существуют еще и неосновные носители заряда. Под действием напряженности поля они начнут дрейфовать навстречу диффундирующим зарядам, возникает дрейфовый ток, направленный навстречу диффузионному току.

Рисунок 12 – ВАХ p-n перехода

1 – прямая ветвь; 2 – обратная ветвь при лавинном пробое; 3 – обратная ветвь при тепловом пробое; 4 – обратная ветвь при туннельном пробое.

Прямую и обратную ветви ВАХ изображают в различном масштабе, поскольку в нормальном режиме работы p-n перехода обратный ток на несколько порядков меньше прямого тока. При достижении обратным напряжением некоторой критической величины (Uпроб) происходит резкое уменьшение сопротивления p-n перехода. Это явление называют пробоем p-n перехода, а соответствующее ему напряжение – напряжением пробоя. Различают электрический и тепловой пробои. В свою очередь, электрический пробой бывает лавинным и туннельным. Если при движении через p-n переход под действием электрического поля неосновные носители заряда приобретают энергию, достаточную для ударной ионизации атомов полупроводника, то в переходе начинается лавинообразное размножение носителей зарядов, что приводит к резкому увеличению обратного тока через переход при почти неизменном обратном напряжении (кривая 2). Это лавинный пробой. Другой вид пробой – туннельный. Он возникает при большой напряженности электрического поля в тонком p-n переходе между высоколегированными полупроводниками в результате тунеллирования электронов из валентной зоны p-слоя в зону проводимости n-слоя. Если температура p-n перехода возрастает в результате его нагрева обратным током и недостаточно теплоотвода, то усиливается процесс генерации пар носителей заряда. Это приводит к дальнейшему нагреву p-n перехода и увеличению обратного тока, что может вызвать разрушение p-n перехода. Тако процесс называют тепловым пробоем.

Вопрос 6

Рисунок 12 – ВАХ p-n перехода

1 – прямая ветвь; 2 – обратная ветвь при лавинном пробое; 3 – обратная ветвь при тепловом пробое; 4 – обратная ветвь при туннельном пробое.

Прямую и обратную ветви ВАХ изображают в различном масштабе, поскольку в нормальном режиме работы p-n перехода обратный ток на несколько порядков меньше прямого тока. При достижении обратным напряжением некоторой критической величины (Uпроб) происходит резкое уменьшение сопротивления p-n перехода. Это явление называют пробоем p-n перехода, а соответствующее ему напряжение – напряжением пробоя. Различают электрический и тепловой пробои. В свою очередь, электрический пробой бывает лавинным и туннельным.

Туннельный пробой возникает при большой напряженности электрического поля в тонком p-n переходе между высоколегированными полупроводниками в результате тунеллирования электронов из валентной зоны p-слоя в зону проводимости n-слоя. Для электрического пробоя характерна обратимость, заключающаяся в том, что первоначальные свойства p-n перехода полностью восстанавливаются, если отключить источник ЭДС от перехода. Благодаря этому оба вида пробоя используются в качестве рабочих режимов в полупроводниковых диодах.

Эффект прохождения электрона сквозь узкий потенциальный барьер называют туннельным эффектом. Для преодоления потенциального барьера валентные электроны должны получить энергию извне. Однако, как известно из курса физики, электроны могут просочиться сквозь узкий потенциальный барьер даже тогда, когда их энергия меньше высоты потенциального барьера. При тунеллировании электрон должен оставаться на одном и том же энергетическом уровне