Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по электронике4.doc
Скачиваний:
237
Добавлен:
02.05.2014
Размер:
1.77 Mб
Скачать

Вопрос 15

Стабилитрон – это прибор, предназначенный для стабилизации напряжения на присоединенной параллельно ему нагрузке в случае изменения ее сопротивления или величины напряжения питания

При работе стабилитрона используется участок пробоя на обратной ветви ВАХ, где значительному изменению тока соответствует очень малое изменение напряжения.

Напряжение стабилизации зависит от толщины p-n перехода, а толщина от величины удельного сопротивления материала

Рис 28 ВАХ стабилитрона

Рис 29 параметрический стабилизатор напряжения; 1 – нагрузка; 2 – для уменьшения пульсации вешается конденсатор.

При изменении температуры напряжение стабилизации изменяется неоднозначно. В слаболегированных полупроводниках (используются в высоковольтных стабилитронах) с ростом температуры длина свободного пробега носителей уменьшается. Для того, чтобы при меньшей длине свободного пробега носители могли приобрести энергию, достаточную для ионизации валентных связей, требуется большая величина напряженности электрического поля.

Напряжение пробоя с ростом температуры должно увеличиваться. В сильнолегированных полупроводниках при росте температуры ширина запрещенной зоны падает, вероятность тунеллирования носителей увеличивается, а напряжение пробоя уменьшается. Следовательно, высоковольтные и низковольтные стабилитроны должны иметь противоположные изменения величины стабилизации при изменении температуры

Основные параметры стабилитрона:

  1. напряжение стабилизации

  2. минимальный и максимальный токи стабилизации

  3. температурный коэффициент напряжения стабилизации

  4. дифференциальное сопротивление в рабочей точке

  5. статическое сопротивление в рабочей точке

  6. коэффициент качества

Стабисторы

Для стабилизации небольших напряжений (меньше 1В) используют прямую ветвь ВАХ. Предназначенные для этого полупроводниковые диоды называют стабисторами.

Кремниевые стабисторы имеют напряжение стабилизации около 0,7В. Для получения малого сопротивления базы диода и меньшего прямого дифф. сопротивления используют кремний с повышенной концентрацией примеси. Стабисторы могут выполняться на основе других полупроводниковых материалов.

Вопрос 16

высокочастотные диоды предназначены для детектирования колебаний высокой частоты и используются в радиоприемной, телевизионной и другой аппаратуре.

Они могут быть точечными, дифф-ными, сплавными или иметь мезаструктуру.

Рис 31 конструкция ВЧ диода. 1 – внешние выводы; 2 – кристалл; 3 – стеклянный корпус; 4 – вольфрамовый электрод

Рис 32 а) эквивалентная схема p-n перехода; б) ВАХ точечного германиевого диода

Эквивалентная схема кроме сопротивления перехода и емкости перехода содержит сопротивление растекания. Его величина определяется геометрическими размерами и конфигурацией точечного перехода. Если предположить, что контакт имеет полусферическую форму, то величина сопротивления растекания приближенно может быть определена: , где- удельное объемное сопротивление полупроводника;- радиус закругления контакта.

Барьерная емкость точечных диодов не превышает 1пФ, их рабочая частота достигает 150МГц.

Высокочастотные кремниевые диоды в конструктивном отношении не отличаются от германиевых. ВАХ кремниевых микросплавных диодов близки к теоретическим, если эксплуатация диодов соответствует паспортным режимам.

Импульсные диоды

Импульсные диоды предназначены для работы в устройствах импульсной техники. Особенностью их работы является значительное проявление эффектов накопления и рассеивания носителей при больших уровнях мощность переключающего сигнала.

Переходы импульсных диодов изготавливаются такими же методами, как и высокочастотные.

Рис 33 конструкция импульсных диодов. 1 – кристаллодержатель; 2 – стеклянный корпус; 3 – коваровая трубка; 4 – внешние выводы; 5 – контактная пружина; 6 – кристалл; 7 – припой.

Основные параметры высокочастотных и импульсных диодов

  1. постоянное прямое напряжение при заданном прямом токе

  2. максимальная величина обратного тока при максимальной величине обратного напряжения

  3. емкость диода при заданной величине обратного напряжения

  4. время восстановления обратного сопротивления

  5. постоянное и импульсное обратные напряжения

  6. средний выпрямленный ток

  7. импульсный прямой ток

  8. частота без снижения параметров, соответствующих паспортному режиму

  9. диапазоны рабочих температур.