Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛИНЕЙНАЯ АЛГЕБРА.docx
Скачиваний:
2
Добавлен:
25.11.2019
Размер:
89.45 Кб
Скачать

ЛИНЕЙНАЯ АЛГЕБРА.

1 Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы.

2 ВИДЫ МАТРИЦ Матрицей размером m×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов.

3 Операции над матрицами

1 Умножение матрицы на число

2 Сложение матриц

3 транспонирование

4 Умножение матриц

4 Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:

5 Рангом системы строк (столбцов) матрицы с строк и столбцов называется максимальное число линейно независимых строк (столбцов). Несколько строк (столбцов) называются линейно независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов, и это число называется рангом матрицы.

6 Определи́тель (или детермина́нт) — одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у которой количество строк и столбцов равно). В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.

7 СВОЙСТВО 1. Величина определителя не изменится, если все его строки заменить столбцами, причем каждую строку заменить столбцом с тем же номером, то есть

.

СВОЙСТВО 2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1. Например,

.

СВОЙСТВО 3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.

СВОЙСТВО 4. Умножение всех элементов одного столбца или одной строки определителя на любое число k равносильно умножению определителя на это число k. Например,

.

СВОЙСТВО 5. Если все элементы некоторого столбца или некоторой строки равны нулю, то сам определитель равен нулю. Это свойство есть частный случае предыдущего (при k=0).

СВОЙСТВО 6. Если соответствующие элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.

СВОЙСТВО 7. Если каждый элемент n-го столбца или n-й строки определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один в n-м столбце или соответственно в n-й строке имеет первые из упомянутых слагаемых, а другой - вторые; элементы, стоящие на остальных местах, у вех трех определителей одни и те же. Например,

СВОЙСТВО 8. Если к элементам некоторого столбца (или некоторой строки) прибавить соответствующие элементы другого столбца (или другой строки), умноженные на любой общий множитель, то величина определителя при этом не изменится. Например,

.

8 Перейти к: навигация, поиск

Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида

(1)

Система линейных уравнений от трёх переменных определяет набор плоскостей. Точка пересечения является решением.

Здесь  — количество уравнений, а  — количество неизвестных. x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными[1]. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[2].

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой

9 Ме́тод Га́усса[1] — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные[2].

10Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

Векторная алгебра

1Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой, декартовой или прямоугольной системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.

Полярная система координат задаётся лучом, который называют нулевым или полярной осью. Точка, из которой выходит этот луч, называется началом координат или полюсом. Любая точка на плоскости определяется двумя полярными координатами: радиальной и угловой. Радиальная координата (обычно обозначается ) соответствует расстоянию от точки до начала координат. Угловая координата, также называется полярным углом или азимутом и обозначается , равна углу, на который нужно повернуть против часовой стрелки полярную ось для того, чтобы попасть в эту точку.[1]

Определённая таким образом радиальная координата может принимать значения от нуля до бесконечности, а угловая координата изменяется в пределах от 0° до 360°. Однако, для удобства область значений полярной координаты можно расширить за пределы полного угла, а также разрешить ей принимать отрицательные значения, что отвечает повороту полярной оси по часовой стрелке.

    1. 3Комплексные числа

Пример комплексного числа , нанесённого на комплексную плоскость.

Пример комплексного числа, нанесённого на график, с использованием формулы Эйлера.

Каждое комплексное число может быть представлено точкой на комплексной плоскости, и, соответственно, эта точка может определяться в декартовых координатах (прямоугольная или декартова форма), либо в полярных координатах (полярная форма). Комплексное число может быть записано в прямоугольной форме так:

где  — мнимая единица, или в полярной (см. формулы преобразования между системами координат выше):

и отсюда:

где  — число Эйлера. Благодаря формуле Эйлера, оба представления эквивалентны[16] (Следует отметить, что в этой формуле, подобно остальным формулам, содержащим возведения в степень углов, угол задан в радианах)

Для перехода между прямоугольным и полярным представлением комплексных чисел, могут использоваться указанные выше формулы преобразования между системами координат.

4Формула Эйлера названа в честь Леонарда Эйлера, который её ввёл, и связывает комплексную экспоненту с тригонометрическими функциями.

Формула Эйлера утверждает, что для любого вещественного числа выполнено следующее равенство:

,

где  — основание натурального логарифма,

 — мнимая единица.

5 Тригонометрическая форма записи комплексного числа.

   Если точка z комплексной плоскости имеет декартовые координаты (х, у), т.е.  и полярные , то они связаны соотношением (1):

                             .

6 Вектор — многозначный термин; величина, характеризующаяся размером и направлением.

7 Длина вектора

8 Действия над векторами.

1) Сложение векторов.

Опр. 6. Суммой двух векторов  и  является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма).

Опр. 7. Суммой трех векторов , ,  называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

Опр. 8. Если А, В, С – произвольные точки, то  +  =  (правило треугольника).

  Свойства сложения.

1о.  +  =  +  (переместительный закон).

2о.  + ( + ) = ( + ) +  = ( + ) +  (сочетательный закон).

3о.  + (– ) + .

2) Вычитание векторов.Под разностью векторов  и понимают вектор  =  –  такой, что  +  = .

В параллелограмме – это другая диагональ СД (см.рис.1).

3) Умножение вектора на число.

Произведением вектора   на скаляр k называется вектор

 = k = k,

имеющий длину ka, и направление, которого:

1.     совпадает с направлением вектора , если k > 0;

2.     противоположно направлению вектора , если k < 0;

3.     произвольно, если k = 0.

Свойства умножения вектора на число.

1о. (k + l) = k + l .

 k( + ) = k + k .

2o. k(l ) = (kl) .

3o. 1 = , (–1) = – , 0 = .

9 колинеарность векторов Свойства векторов.

Опр. 11. Два вектора  и  называются коллинеарными, если они расположены на параллельных прямых или на одной прямой.

Нулевой вектор  коллинеарен любому вектору.

Теорема 1. Два ненулевых вектора   и коллинеарны,  когда они пропорциональны т.е.  = k , k – скаляр.

Опр. 12. Три вектора , ,  называются компланарными, если они параллельны некоторой плоскости или лежат в ней.

Теорема 2. Три ненулевых вектора , ,  компланарны,  когда один из них является линейной комбинацией двух других, т.е .  = k + l , k ,l – скаляры.

10 раложение вектора по базису Постановка задачи. Найти разложение вектора  по векторам

.

План решения.

1. Искомое разложение вектора  имеет вид

.

2. Это векторное уравнение относительно  эквивалентно системе трех линейных уравнений с тремя неизвестными

3. Решаем эту систему линейных алгебраических уравнений относительно переменных  и таким образом определяем коэффициенты разложения вектора  по векторам .

Замечание. Если система уравнений не имеет решений (векторы  лежат в одной плоскости, а вектор  ей не принадлежит), то вектор  нельзя разложить по векторам . Если же система уравнений имеет бесчисленное множество решений (векторы  и вектор  лежат в одной плоскости), то разложение вектора  по векторам  неоднозначно.

Задача 1. Написать разложение вектора  по векторам .

Имеем

,

или

Т.е. искомое разложение имеет вид

.