Скачиваний:
26
Добавлен:
20.05.2014
Размер:
105.98 Кб
Скачать

Нормированные формы представления результатов измерений и оценки неопределенности результатов измерений

Результат измерений должен отвечать требованиям обеспечения единства измерений, следовательно, в описании результата должны быть использованы узаконенные единицы физических величин и представлена оценка его погрешности. Информацию о единицах физических величин можно найти в нормативной документации, специальной и справочной литературе.

Стандартное определение единства измерений требует, чтобы погрешности были известны с заданной вероятностью, из чего следует:

  • в описание результата входят только стохастически представляемые погрешности, значит систематические составляющие по возможности должны быть исключены;

  • неисключенные остатки систематической составляющей погрешности измерения могут входить в описание результата измерений как рандомизированные величины, значения которых соизмеримы со случайной составляющей погрешности измерения;

  • если неисключенные остатки систематической составляющей погрешности измерения существенно меньше случайной составляющей, ими пренебрегают, но возможна (хотя и нежелательна) обратная ситуация, когда собственно случайная составляющая оказывается пренебрежимо малой по сравнению с неисключенной систематической составляющей.

Описание результата измерений должно осуществляться в одной из стандартных форм по МИ 1317–86 "Методические указания. ГСИ. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров". МИ 1317–86 требует включения либо "характеристик погрешности измерений", либо их статистических оценок. В соответствии с МИ 1317–86 под "характеристикой погрешности измерений" понимают все те же статистические оценки, но при этом используют данные, заимствованные из аттестованной или стандартизованной МВИ, для получения которых нет необходимости непосредственно проводить измерения с многократными наблюдениями одной и той же физической величины с последующей статистической обработкой массива результатов.

Формы представления результатов измерений

Общая форма представления результата измерения в соответствии с требованиями МИ 1317–86 включает:

  • точечную оценку результата измерения;

  • характеристики погрешности результата измерения (или их статистические оценки);

  • указание условий измерений, для которых действительны приведенные оценки результата и погрешностей. Условия указываются непосредственно или путем ссылки на документ, удостоверяющий приведенные характеристики погрешностей.

В качестве точечной оценки результата измерения при измерении с многократными наблюдениями принимают среднее арифметическое значение результатов рассматриваемой серии.

Характеристики погрешности измерений можно указывать в единицах измеряемой величины (абсолютные погрешности) или в относительных единицах (относительные погрешности).

Характеристики погрешностей измерений или статистические оценки по НД:

  • среднее квадратическое отклонение погрешности;

  • среднее квадратическое отклонение случайной погрешности;

  • среднее квадратическое отклонение систематической погрешности;

  • нижняя граница интервала погрешности измерений;

  • верхняя граница интервала погрешности измерений;

  • нижняя граница интервала систематической погрешности измерений;

  • верхняя граница интервала систематической погрешности измерений;

  • вероятность попадания погрешности в указанный интервал.

Рекомендуемое значение вероятности Р = 0,95.

Возможные характеристики погрешностей включают аппроксимации функции плотностей распределения вероятностей или статистические описания этих распределений. Функцию плотностей распределения вероятностей погрешности измерений считают соответствующей усеченному нормальному распределению, если есть основания полагать, что реальное распределение симметрично, одномодально, отлично от нуля на конечном интервале значений аргумента, и другая информация о плотности распределения отсутствует.

Если есть основания полагать, что реальное распределение погрешностей отлично от нормального, следует принимать какую-либо другую аппроксимацию функции плотностей распределения вероятностей. В таком случае принятая аппроксимация функции указывается в описании результата измерений, например: "трап." (при трапециевидном распределении) или "равн." (при равновероятном).

В состав условий измерений могут входить: диапазон значений измеряемой величины, частотные спектры измеряемой величины или диапазон скоростей ее изменений; диапазоны значений всех величин, существенно влияющих на погрешность измерений, а также, при необходимости, и другие факторы.

Требования к оформлению результата измерений:

  • наименьшие разряды должны быть одинаковы у точечной оценки результата и у характеристик погрешностей;

  • характеристики погрешностей (или их статистические оценки) выражают числом, содержащим не более двух значащих цифр, при этом для статистических оценок цифра второго разряда округляется в большую сторону, если последующая цифра неуказываемого младшего разряда больше нуля;

  • допускается характеристики погрешностей (или их статистические оценки) выражать числом, содержащим одну значащую цифру, при этом для статистических оценок второй разряд (неуказываемый младший) округляется в большую сторону при округлении цифры младшего разряда равной или больше 5 и в меньшую сторону при цифре меньше 5.

Примеры форм представления результатов измерений:

  1. (8,334 ± 0,012) г; Р = 0,95.

  2. 32,014 мм. Характеристики погрешностей и условия измерений по РД 50-98 – 86, вариант 7к.

  3. (32,010…32,018) мм; Р = 0,95. Измерение индикатором ИЧ 10 кл. точности 0 на стандартной стойке с настройкой по концевым мерам длины 3 кл. точности. Измерительное перемещение не более 0,1 мм; температурный режим измерений ± 2 оС.

  4. 72,6360 мм; Δн= – 0,0012 мм, Δв= + 0,0018 мм, Релей; Р = 0,95.

о

  1. 10,75 м3/с; σ (Δ) = 0,11 м3/с, σ (Δс) = 0,18 м3/с, равн. Условия измерений: температура среды 20 оС, кинематическая вязкость измеряемого объекта 1,5·10 –6 м2/с.

В пятом примере не указано значение доверительной вероятности, что можно рассматривать как формальное несоответствие требованиям обеспечения единства измерений. Однако противоречие не принципиальное, а скорее кажущееся, поскольку переход к оценке границ областей рассеяния случайной и неисключенной систематической составляющих погрешности измерений требует выбора доверительной вероятности. Расчет осуществляется через коэффициент Стьюдента t, а его значение зависит от числа степеней свободы и от выбранной доверительной вероятности, которая должна быть одинакова для обеих составляющих (случайной и систематической составляющих погрешности). В качестве комментария следует сказать, что такая полная форма годится только для экзотических исследовательских ситуаций и непрактична в производственном употреблении, для которого желательна комплексная оценка погрешности измерения, например, полученная в результате компонирования двух описывающих составляющие погрешности функций.

Можно предложить графическую интерпретацию результата измерений на числовой оси физической величины. Тогда для первого из приведенных примеров (8,334 ± 0,012) г; Р = 0,95 сам результат выглядит как показано на рис. 1. Для указания доверительной вероятности проводим ось ординат (плотности вероятности р) из точки, соответствующей точечной оценке результата измерений и строим в полученной системе координат кривую нормального распределения результатов или погрешностей измерений. Из рисунка видно, что для увеличения доверительной вероятности (заштрихованной площади) Р необходимо расширить зону между границами погрешности измерений ± Δ. При фиксированном значении σ этого можно добиться только за счет увеличения коэффициента Стьюдента t.

Зона между зафиксированными предельными значениями ХΔ и Х + Δ с выбранной доверительной вероятностью Р накрывает истинное значение измеряемой физической величины, но поскольку фактически результат измерений представлен не в виде единичного значения, а как числовой интервал, принято говорить о "неопределенности результата измерений". В этом термине под неопределенностью результата фактически подразумевают не только то, что результат измерений фиксируется интервалом значений, а не конкретной точкой на оси, но и то, что неизвестной (неопределенной) остается координата истинного значения. В более широком смысле можно говорить также и о неопределенности "закона распределения" результатов многократных наблюдений при измерении конкретной физической величины.

Исследование (качественное и количественное) неопределенности результатов измерений обычно осуществляется в ходе математической обработки результатов многократных наблюдений, полученных при измерении одной физической величины. В исследование обычно входят:

  • нахождение сопоставимых оценок случайной погрешности и неисключенных остатков систематической погрешности и сравнение их значений;

  • проверка по критериям согласия гипотез о "законах распределения" случайной погрешности и неисключенных остатков систематической погрешности;

  • статистическая проверка и при положительном результате отбраковывание отдельных наблюдений, содержащих грубые погрешности.

Неопределенность результатов, полученных при измерении конкретной физической величины с многократными наблюдениями, зависит от множества объективных и субъективных причин, основные из которых:

  • использованные технические ресурсы (средства измерений, организация среды в зоне измерений и др.);

  • число наблюдений в серии;

  • выбор гипотез о "законах распределения", критериев согласия, уровней значимости при проверке гипотез по критериям согласия;

  • выбор метода отбраковывания наблюдений с явно выраженными грубыми погрешностями, "подозрительных" наблюдений, критериев статистического отбраковывания, уровней значимости при проверке гипотез по этим критериям;

  • выбор значения доверительной вероятности для описания результата измерений.

Последний фактор можно признать несущественным, поскольку формы представления результатов измерений фактически позволяют пользователю перейти от зафиксированного в описании значения доверительной вероятности к любому выбранному.

Итак, неопределенность результатов измерений есть комплексное явление, обусловленное техническими возможностями и квалификацией метрологов, организующих измерения. В узкой трактовке неопределенность результатов измерений связывают только с оценками погрешностей измерений, а более конкретно – с усеченной областью их распределения, полученной в результате статистической обработки данных многократных наблюдений при измерениях.

В 1993 году в метрологическом комитете ИСО было разработано "Руководство по выражению неопределенности измерений". "Руководство" разрабатывалось при участии Международного комитета мер и весов (МКМВ), Международной электротехнической комиссии (МЭК), Международной организации по законодательной метрологии (МОЗМ), Международного союза по чистой и прикладной физике (МС ЧПФ), Международного союза по чистой и прикладной химии (МС ЧПХ) и Международной федерации клинической химии (МФКХ).

Декларируемые цели "Руководства":

  • Предоставление универсального метода выражения и оценивания неопределенности результатов измерений, применимого ко всем видам измерений и пригодного для представления всех типов данных, описывающих результаты измерений.

  • Обеспечение полной информации о том, как составлять отчеты о неопределенности измерений.

  • Обеспечение возможности международного сопоставления результатов измерений.

Очевидно, что "Руководство" предназначено для поддержания единства измерений в международном масштабе, и такой шаг является полезным. Однако с появлением первых переводов выдержек из этого документа и документа в целом у некоторых метрологов сложилось представление, что речь идет о принципиально новом подходе к оценке и представлению результатов измерений. Это мнение уже породило множество публикаций и заблуждений, включая призывы "переучиваться" и "переходить на более прогрессивные формы представления результатов измерений".

Анализ фактического положения подтверждает, что ничего принципиально нового для классической метрологии и стандартной системы обеспечения единства измерений "Руководство" не содержит. Различия состоят в применяемом понятийном аппарате (несовпадение ряда терминов и определений), а также в неполном совпадении некоторых алгоритмов расчета и коэффициентов при использовании одинаковых базовых подходов.

ВНИИМ им. Д.И.Менделеева в 1999 году разработал нормативный документ "Рекомендация. (ГСИ. МИ 2552-99. Применение "Руководства по выражению неопределенности измерений"), цель которого ясна из названия. Задачами документа являются изложение основных положений "Руководства" и рекомендаций по их применению, сравнительный анализ двух подходов к описанию результатов измерений и показ соответствия между формами представления результатов измерений, принятыми в ГСИ и предлагаемыми в "Руководстве".

МИ 2552-99 предлагает применять для сопоставления оценок характеристик неопределенностей и погрешностей результатов измерений следующую схему соответствия (рис. 2).

Рис. 2. Схема соответствия оценок характеристик неопределенностей и погрешностей результатов измерений

Фактически схема соответствия не вполне корректна, поскольку во второй паре соответствие является неполным. а в третьей не соблюдается.

Проведенные в этом же нормативном документе расчеты подтверждают, что различия оценок из-за неполного соответствия некоторых алгоритмов расчета и коэффициентов не превышают 11 %, что для рядовых измерений можно считать пренебрежимо малым расхождением.

Соседние файлы в папке Лекции по метрологии. 3 Курс. 1 семестр