Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы геологии. Реферат, с картинками и таблицами.doc
Скачиваний:
120
Добавлен:
20.05.2014
Размер:
272.9 Кб
Скачать

Изоморфное рассеяние и маскировка редких химических элементов

Другим важнейшим фактором, ограничивающим число минеральных видов, является изоморфизм, то есть способность атомов разных химических элементов замещать друг друга в одних и тех же позициях кристаллической структуры, что приводит к образованию твердых растворов [5, 6]. Главными условиями изоморфизма являются близость размеров атомов или ионов, замещающих друг друга, и близость таких химических свойств, как, например, электроотрицательностей. Известно, что даже при близости размеров (А) ионы Na+ (r = 0,95) и Cu+ (r = 0,96), K+ (r = 1,33) и Ag+ (r = 1,26), Ca2+ (r = 0,99) и Hg2+ (r = 1,10) не образуют изоморфных смесей из-за большого различия электроотрицательностей (хNa = 0,9, хCu = 1,9, хK = 0,8, хAg = 1,9, хCa = 1,0, хHg = 1,9), то есть, иными словами, из-за разного характера химической связи с какими-либо одинаковыми по размеру атомами. В общем принято считать, что условиями, благоприятными для изоморфного замещения, являются относительное различие размеров, не превышающее 15% (dr/r  меньше или равно 0,15), и разности электроотрицательностей dx не более 0,4. Однако не следует забывать, что пределы взаимной смесимости резко расширяются с ростом температуры и другие факторы могут способствовать изоморфизму [6].

Есть несколько химических элементов, которые вообще не образуют собственных минеральных фаз, а входят в кристаллические постройки более распространенных идеальных изоморфных партнеров. Таковы рубидий, постоянно замещающий калий в распространенных полевых шпатах и слюдах, гафний, полностью маскирующийся в минералах циркония, в которых он и был обнаружен, и рений, целиком находящийся в минералах молибдена, прежде всего в молибдените. Несколько других элементов образуют только очень редкие собственные минералы - это германий и галлий, спрятанные почти полностью в минералах кремния и алюминия соответственно, скандий, постоянный спутник магния, тантал и ниобий, замещающие титан во многих минералах. К этому перечню надо добавить еще группу платиноидов (шесть элементов), а также редкие земли и иттрий (пятнадцать элементов), образующие благодаря тесным изоморфным связям между собой почти исключительно общие кристаллические постройки. Наконец, сюда же относятся кадмий, индий и таллий, которые, как правило, входят в виде примесей в сульфидные минералы полиметаллических руд (сфалерит, галенит, халькопирит). Таким образом, почти треть всех стабильных элементов либо не дает собственных минералов, либо образует очень редкие минералы, встречающиеся в специфических условиях. Характерна зависимость между числом минеральных видов и атомным весом элемента: чем тяжелее элемент, тем меньше его распространенность и тем менее вероятно для него большое число минералов.

Конечно, это не закон, а лишь правило, из которого имеется много исключений (например, висмут, золото). К примеру, цезий, гораздо менее распространенный, чем его аналог рубидий, тем не менее дает собственные минералы, из которых наиболее известен поллуцит CsAlSi2O6. Это связано с тем, что в результате большого различия радиусов К+ и Cs+ (dr/r = 20%) они не могут быть изоморфными в той же степени, как К+ и Rb+ (dr/r = 10%), и поэтому слишком крупный Cs+ вынужден накапливаться в остаточных расплавах и выделяться из них в виде собственных минералов. Подобна судьба и слишком мелкого Be2+ (r = 0,31 А), который не находит себе изоморфных партнеров среди более распространенных элементов и образует собственные минералы (берилл, фенакит) в конечных продуктах кристаллизационной дифференциации. Еще один показательный пример касается минералогии теллура. В отличие от более легкого аналога по группе - селена теллур слишком сильно отличается по размеру от своего потенциального изоморфного хозяина серы (S-Se, dr/r = 7%; S-Te, dr/r = 19%). Это не позволяет ему так же широко пользоваться гостеприимством сульфидных минералов, как селену, и в результате число минералов Te, примерно в 35 раз менее распространенного, чем Se, оказывается сравнимым или даже большим, чем минералов Se.

Исключения, которые только поддтверждают правило

Картина, нарисованная выше, была бы неполной, если не указать некоторые исключения. Среди них одним из наиболее ярких является весьма специфический минералогический мир щелочных пород, примеры которых дают известные горные массивы Хибинских и Ловозерских тундр на Кольском полуострове. Эти породы представляют собой уникальные кладовые редких элементов, которые в них многократно концентрируются. Именно здесь только за 25 последних лет было открыто 114 новых минеральных видов, а всего в этих массивах присутствует около 500 видов, что значительно больше, чем в любом другом горном массиве или месторождении [7]. Подавляющая часть новых находок относится к минералогическим редкостям и, кроме того, весьма часто нестабильным на земной поверхности. Так, десятки из этих минералов растворимы в воде и могут сохраняться только на больших глубинах в специфических по составу и происхождению ультращелочных породах. Само появление этих необычных минералов обязано уникальным условиям (составу, температуре и давлению) среды, и у них нет шансов сохраниться при изменении условий, например при выветривании.

Другие события, которое дают много новых минеральных видов, сопровождают современные вулканические извержения. При конденсации вулканических газов в кратерах и вблизи них кристаллизуются налеты солей серной, соляной кислот и их аналогов (арсенаты, ванадаты). Хорошо известен, например, легко растворимый в воде нашатырь NH4Cl, который встречается как продукт возгонов в кратерах вулканов и пустотах среди застывших лав (Везувий, Этна). В холодных фумаролах камчатских вулканов встречаются скопления нашатыря в несколько тонн весом.

С вулканом Кудрявым на острове Итуруп (Курилы) связано недавнее сенсационное открытие [8] единственного минерала рения - ReS2. Самостоятельная кристаллизация этого вещества и практически полное отделение его от обычного хозяина примесей рения - молибденита MoS2 требуют совершенно исключительных условий - увеличения концентрации рения на восемь порядков против обычных и очень узкого интервала температур и давлений.

Таким образом, можно утверждать, что новые открытия минеральных видов, которые, несомненно, еще предстоит сделать пытливым испытателям природы, не смогут в корне изменить основы наших представлений о природе того естественного отбора, который столь резко отличает химию Земли и известного нам  Космоса от препаративной и технологической химии.

Литература

 Fleischer M. Glossary of Mineral Species. Tucson: Mineral Record. Inc., 1987.

 Yaroshevsky A.A., Bulakh A.G. In: Advanced Mineralogy / Ed. A.S. Marfunin. N.Y.: Springer, 1994. Vol. 1. P. 27-36.

 Перельман А.И. Геохимия. М.: Высш. шк., 1979.

Урусов В.С.  Энергетическая кристаллохимия. М.: Наука, 1975.

 Урусов В.С. Теория изоморфной смесимости. М.: Наука, 1977.

 Урусов В.С. Твердые растворы в мире минералов // Соросовский Образовательный Журнал. 1996. N 11. С. 54-60.

 Хомяков А.П. // Природа. 1996. N 5. C. 62-74.

 Korzhinsky M.A., Tkachenko S.I., Shmulovich K.I. et al. // Monthly Nature. 1994. Vol. 2, N 5. P. 77-78.

Два подземных источника, способных обеспечить Сыктывкар хозяйственно-питьевой водой высокого качества, обнаружили геологи около города. Об этом "Комиинформу" сообщил заместитель руководителя департамента Министерства природных ресурсов и охраны окружающей среды Коми Михаил Тарбаев. По данным начальника гидрорежимной партии Вычегодской геологоразведочной экспедиции Валентины Лапицкой, сегодня город пользуется поверхностными водами, на которые негативно влияют различные стоки, выбросы предприятий и прибрежный мусор, смываемый во время половодья. С 1998 года экспедиция тщательно изучала территории в радиусе 30 километров от Сыктывкара. Среди выявленных подземных источников отбирались менее удаленные от города, которые могут обеспечить полностью или частично Сыктывкар хозяйственно-питьевой водой. В результате, были обнаружены два перспективных участка подземных вод. Один из них располагается на правом берегу реки Вычегда, в десяти километрах от Эжвинского района Сыктывкара, и может выработать 25 тысяч кубических метров в сутки. Этого достаточно, чтобы полностью обеспечить район водой. С остальной частью Сыктывкара ситуация обстоит сложнее: единственный приемлемый водозабор "Бадья" расположен в районе нового строящегося аэропорта, в 20 километрах от города. Он рассчитан примерно на 50 тысяч кубических метров воды в сутки, тогда как городу нужно около 80 тысяч. Следующим этапом в реализации проекта должна стать разработка технико-экономического обоснования обеспечения города альтернативными источниками хозяйственно-питьевой воды. Это возможно при объединении усилий органов управления и финансовых средств городских и республиканских уровней, считает М.Тарбаев. На осуществление проекта необходимо около трех лет и 5-7 миллионов рублей в год. М.Тарбаев отметил, что мэр Сыктывкара Сергей Катунин в полной мере осведомлен о "водной" проблеме города и в письме к Минприроды РК просил поддержать проведение подобных работ на ближайшую перспективу.

Информационное агентство «Комиинформ»

назад

2002-июль/15

вперед

Доклад "О приоритетных направлениях деятельности Федерального агентства по недропользованию" Аналитическая записка, подготовленная к заседанию рабочей группы Федерального агентства по недропользованию Представляем "Минеральные ресурсы мира", 2002 год, том 2 Государственный доклад о состоянии МСБ РФ Анализ перспектив освоения газовых ресурсов Восточной Сибири и Дальнего Востока Представляем уникальное издание - Атлас лицензий РФ на нефть и газ

Каптаж

(франц. captage, от лат. capto - ловлю, хватаю), комплекс инженерно-технических мероприятий, обеспечивающий вскрытие подземных вод, нефти и газа, вывод их на поверхность Земли и возможность эксплуатации при устойчивых во времени оптимальных показателях (дебит, химический состав, температура и др.). Для перехвата пресных, термальных, промышленных подземных вод пользуются также равнозначным термином "сооружение водозабора".

Культура К. известна с ранних эпох цивилизации и достигала высокого уровня в Древнем Риме (термы императора Каракаллы, водопроводные сооружения), Месопотамии, Северной Африке (Акве-Флавнане), Средней Азии, на Кавказе (кяризы) и др.

Современные каптажные сооружения для подземных вод отличаются большим разнообразием типов и конструкций, учитывающих особенности гидрогеологических условий местности, состав воды, технические и санитарные требования, определяемые заданными режимом водопотребления и целевым назначением эксплуатируемых вод. Простейшим типом каптажных сооружений является шахтный колодец (рис. 1), перехватывающий подземные воды неглубоко залегающих водоносных горизонтов; для предотвращения обвалов стенки колодцев закрепляются каменной кладкой, монолитным бетоном и др. При вскрытии нескольких водоносных слоев горизонт, намеченный к эксплуатации, изолируется от ниже- и вышележащих слоев путём их тампонажа. Наряду с колодцами применяются штольни - протяжённые горизонтальные или слабонаклонные горные выработки, сооружаемые в сильно пересечённых местностях. Иногда штольни сопровождаются системой наклонных, горизонтальных или восстающих скважин, пробуриваемых в боковых стенках и забойной части подземной галереи для увеличения притока воды. К. штольнями осуществлен в СССР в Пятигорске;: за рубежом - в Баньер-де-Люшоне (Франция), Бен-Харуне (Алжир) и др. К. безнапорного источника может осуществляться с помощью камеры (рис. 2).

Наиболее распространённым типом каптажных сооружений являются буровые скважины - одиночные или групповые. Механизированная проходка скважин обеспечивает вскрытие водоносных горизонтов и зон в весьма сложных горно-геологических условиях на глубинах до 2 км и более. При этом удаётся надёжно разобщать водоносные горизонты в скважинах (обсадка трубами, цементация затрубного пространства), предотвращать обвалы стенок и прорыв воды по затрубному пространству, а также устанавливать насосное оборудование, обеспечивающее отбор с заданными эксплуатационными дебитами. Для обсадки таких скважин обычно применяются стальные трубы. При эксплуатации агрессивных подземных вод (углекислых, сероводородных, с низким pH и др.) каптажные скважины обсаживаются трубами из антикоррозийных материалов: легированных сталей, винипласта, полиэтилена, асбоцемента и прочими. Надкаптажные сооружения на месторождениях минеральных подземных вод выполняются в виде бюветов, павильонов, галерей.

К. нефтяных и газовых залежей заключается в герметизации и разобщении межтрубного пространства скважин, регулировании режима их работы и подачи в скважину (или отвода из неё) газа или жидкости. Это достигается специальным оборудованием устья нефтяной или газовой скважины. В зависимости от способа эксплуатации различают К. фонтанных, компрессорных, газлифтных и насосных скважин.

Лит.: Абрамов С. К., Семенов М. П., Чалищев А. М., Водозаборы подземных вод, 2 изд., М., 1956; Лаврушко П. Н., Муравьев В. М., Эксплуатация нефтяных и газовых скважин, М., 1964; Поиски и разведка подземных вод для крупного водоснабжения, М., 1969; Вартанян Г. С., Яроцкий Л. А., Методические указания по поискам, разведке и оценке эксплуатационных запасов месторождений минеральных вод, М., 1970.

В. Г. Афонин, Г. С. Вартанян.

Материалы предоставлены проектом Рубрикон

Минеральные воды,

подземные (иногда поверхностные) воды, характеризующиеся повышенным содержанием биологически активных минеральных (реже органических) компонентов и (или) обладающие специфическими физико-химическими свойствами (химический состав, температура, радиоактивность и др.), благодаря которым они оказывают на организм человека лечебное действие. В зависимости от химического состава и физических свойств М. в. используют в качестве наружного или внутреннего лечебного средства.

Закономерности образования и распространения. Процесс образования М. в. весьма сложен и ещё недостаточно изучен. При характеристике генезиса М. в. различают происхождение самой подземной воды, присутствующих в ней газов и образование её ионно-солевого состава.

В формировании М. в. участвуют процессы инфильтрации поверхностных вод, захоронения морских вод во время осадконакопления, высвобождение конституционной воды при региональном и контактовом метаморфизме горных пород и вулканические процессы. Состав М. в. обусловлен историей геологического развития, характером тектонических структур, литологии, геотермических условий и другими особенностями территории. Наиболее мощные факторы, обусловливающие формирование газового состава М. в., - метаморфические и вулканические процессы. Выделяющиеся во время этих процессов летучие продукты (CO2, HCl и др.) поступают в подземные воды и придают им высокую агрессивность, способствующую выщелачиванию вмещающих пород и формированию химического состава, минерализации и газонасыщенности воды. Ионно-солевой состав М. в. формируется при участии процессов растворения соленосных и карбонатных отложений, катионного обмена и др.

Газы, растворённые в М. в., служат показателями геохимических условий, в которых шло формирование данной М. в. В верхней зоне земной коры, где преобладают окислительные процессы, М. в. содержат газы воздушного происхождения - азот, кислород, углекислоту (в незначительном объёме). Углеводородные газы и сероводород свидетельствуют о восстановительной химической обстановке, свойственной более глубоким недрам Земли; высокая концентрация углекислоты позволяет считать содержащую её воду сформировавшейся в условиях метаморфической обстановки.

На поверхности Земли М. в. проявляются в виде источников, а также выводятся из недр буровыми скважинами (глубины могут достигать нескольких км). Для практического освоения (см. Каптаж) выявляются месторождения подземных М. в. со строго определёнными эксплуатационными возможностями (эксплуатационными запасами).

На территории СССР и зарубежных стран выделяются провинции М. в., каждая из которых отличается гидрогеологическими условиями, особенностями геологического развития, происхождением и физико-химическими характеристиками М. в.

Достаточно изолированные пластовые системы артезианских бассейнов представляют собой провинции солёных и рассольных вод разнообразного ионного состава с минерализацией до 300-400 г/л (иногда до 600 г/л); они содержат газы восстановительной обстановки (углеводороды, сероводород, азот). Складчатые регионы и области омоложенных платформ соответствуют провинциям углекислых М. в. (холодных и термальных) различной степени минерализации. Области проявления новейших тектонических движений относятся к провинции азотных слабоминерализованных щелочных, часто кремнистых терм и др. Территория СССР особенно богата углекислыми М. в. (Кавказская, Забайкальская, Приморская, Камчатская и другие провинции).

В зависимости от структурной приуроченности и связанных с этим гидродинамических и гидрогеохимических условий в СССР выделяются следующие типы месторождений М. в.: платформенных артезианских бассейнов (Кашинское, Старорусское, Тюменское, Сестрорецкое и др.); предгорных и межгорных артезианских бассейнов и склонов (Чартакское, Тбилисское, Нальчикское и др.); артезианских бассейнов, связанных с зонами восходящей разгрузки М. в. (Нагутское, Ессентукское, Джалал-Абадское и др.); трещинно-жильных вод гидрогеологических массивов (Исти-Суйскос, Кульдурское, Белокурихинское и др.); гидрогеологических массивов, связанных с зонами восходящей разгрузки М. в. в горизонты грунтовых вод (Дарасунское, Шивандинское, Шмаковское и др.); грунтовых М. в. (Марциальные воды, Увильдинское, Кисегачское, Боровое и др.).

Лечебное действие минеральных вод. М. в. оказывают на организм человека лечебное действие всем комплексом растворённых в них веществ, а наличие специфических биологически активных компонентов (CO2, H2S, As и др.) и особых свойств определяет часто методы их лечебного использования. В качестве основных критериев оценки лечебности М. в. в советской курортологии приняты особенности их химического состава и физических свойства, которые одновременно служат важнейшими показателями для их классификации.

Минерализация М. в., т. е. сумма всех растворимых в воде веществ - ионов, биологически активных элементов (исключая газы), выражается в граммах на 1 л воды. По минерализации различают: слабоминерализованные М. в. (1-2 г/л), малой (2-5 г/л), средней (5-15 г/л), высокой (15-30 г/л) минерализации, рассольные М. в. (35-150 г/л) и крепкорассольные (150 г/л и выше). Для внутреннего применения используют обычно М. в. с минерализацией от 2 до 20 г/л.

По ионному составу М. в. делятся на хлоридные (Cl-), гидрокарбонатные (HCO3-), сульфатные (SO42-), натриевые (Na+), кальциевые (Ca2+), магниевые (Mg2+) в различных сочетаниях анионов и катионов. По наличию газов и специфических элементов выделяют следующие М. в.: углекислые, сульфидные (сероводородные), азотные, бромистые, йодистые, железистые, мышьяковистые, кремниевые, радиоактивные (радоновые) и др. По температуре различают М. в. холодные (до 20 °С), тёплые (20-37 °С), горячие (термальные, 37-42 °С), очень горячие (высокотермальные, от 42 °С и выше). В медицинской практике большое значение придают содержанию органических веществ в маломинерализованных водах, т. к. они определяют специфические свойства М. в. Содержание этих веществ свыше 40 мг/л делают М. в. не пригодными для внутреннего применения.

Разработаны специальные нормы, дающие возможность оценивать пригодность природных вод для лечебных целей.

Нормы отнесения вод к категории минеральных

Определяющие показатели

Нижние пределы, мг/л

Твёрдые составные части

2000

Углекислота (свободная)

500

Сероводород (общий)

10

Железо

20

Мышьяк (элементарный)

0,7

Бром

25

Иод

5

Кремниевая кислота

50

Радон

14 ед. Махе

Состав М. в. указывают по формуле, предложенной советскими учёными М. Г. Курловым и Э. Э. Карстенсом. В начале формулы даётся содержание газа (CO2, H2S и др.) и активных элементов (Br, I, Fe, As и др.) в граммах на 1 л. Радиоактивность выражается в единицах Махе или в расп/сек×м3 (1 ед. Махе = 1,3×104 расп/сек×м3). Степень минерализации обозначается знаком М (сумма анионов, катионов и недиссоциированных молекул) и выражается в граммах. Отношение преобладающих анионов и катионов изображается в виде условной дроби, в числителе которой - преобладающие анионы, в знаменателе - катионы. В конце формулы указывается температура (Т) воды минерального источника при выходе в градусах Цельсия, а также водородный показатель (pH).

Пример характеристики кисловодского нарзана:

Расшифровывается эта формула следующим образом: углекислая гидрокарбонатно-сульфатная кальциево-магниевая вода с минерализацией 2,3 г на 1 л с температурой 14 °С и pH = 6,2.

М. в. используют на курортах для питьевого лечения, ванн, купаний в лечебных бассейнах, всевозможных душей, а также для ингаляций и полосканий при заболеваниях горла и верхних дыхательных путей, для орошения при гинекологических заболеваниях и т. п. О наружном применении М. в. подробнее см. в ст. Бальнеология, Бальнеотерапия, Ванны.

М. в. применяют внутрь и во внекурортной обстановке, когда пользуются привозными водами, разлитыми в бутылки. К 1974 в СССР было свыше 100 заводов и цехов по бутылочному разливу М. в. с производительностью свыше 900 млн. бутылок в год. Налитая в бутылки вода насыщается двуокисью углерода для сохранения её химыических свойств и вкусовых качеств; она должна быть бесцветной, абсолютно чистой; бутылки с М. в. хранят в горизонтальном положении в прохладном месте. Лечение бутылочными М. в. должно сочетаться с соблюдением определенного режима, диеты и использованием дополнительных лечебных факторов (физиотерапии, медикаментозного лечения, гормональной терапии и т. п.).

М. в., преимущественно невысокой минерализации и содержащие ионы кальция, обладают выраженным диуретическим (мочегонным) действием и способствуют выведению из почек, почечных лоханок и мочевого пузыря бактерий, слизи, песка и даже мелких конкрементов. Применение М. в. противопоказано, например, при сужении пищевода и привратника желудка, резком опущении желудка, сердечно-сосудистых заболеваниях, сопровождающихся отёками, нарушениях выделительной способности почек и т. д. Лечение М. в. должно проводиться по назначению врача и под врачебным контролем. Подробные сведения об основных М. в., разливаемых в бутылки, их химическом составе, показаниях к применению см. в статьях об отдельных курортах, где расположены источники этих вод: Арзни, Аршан, Баталинский источник, Берёзовские Минеральные Воды, Боржоми, Курорт-Дарасун, Джермук, Дилижан, Друскининкай, Ессентуки, Железноводск, Ижевские Минеральные Воды, Истису, Кармадон, Кашин, Кисловодск, Краинка, Кука, Лугела, Миргород, Саирме, Славяногорск, Смирновский источник, Трускавец, Шиванда, Шмаковка, Ямаровка (см. карту при ст. Курорты). В зарубежной Европе углекислые М. в. распространены в Центральной Франции (курорт Виши и др.), ФРГ (Бад-Наухейм, Бад-Эмс, Вильдунген), Чехословакии (Карлови-Вари, Марианске-Лазне и др.). Гидросульфитные азотные тёплые и горячие М. в. имеются на границе Франции и Испании в Пиренеях, на французском курорте Экс-ле-Бен, в Чехословакии (Теплице); в Венгрии горячие азотные воды используют в Будапеште, в Болгарии - в окрестностях Софии и т. д. Много выходов азотных горячих М. в. есть в районах недавней вулканической деятельности (США, Исландия, Италия, Новая Зеландия и др.). Сероводородные М. в. встречаются в ФРГ (Ахен), Австрии (Баден), Румынии (Бэиле-Еркулане), Турции (Бурса).

Искусственные М. в. изготовляют из химически чистых солей строго по аналогии с составом естественных. Однако полного тождества состава искусственных и естественных М. в. не достигнуто. Особые затруднения представляет имитация состава растворённых газов и свойств коллоидов. Из искусственных М. в. широкое распространение получили лишь углекислые, сероводородные и азотные, которые применяют главным образом для ванн. Центральным институтом курортологии и физиотерапии (Москва) предложены методы приготовления некоторых питьевых М. в., которые имеют высокую терапевтическую ценность (типа Ессентуки Ї 17, Боржоми, Баталинской); однако искусственные питьевые М. в. не получили широкого применения в СССР, т. к. с каждым годом количество бальнеологических питьевых курортов и буровых скважин, выводящих М. в., увеличивается и соответственно возрастает разлив М. в.

Некоторые М. в. применяют в качестве освежающего, хорошо утоляющего жажду столового напитка, способствующего повышению аппетита и употребляемого вместо пресной воды, без каких-либо медицинских показаний. В ряде районов СССР обычная питьевая вода достаточно сильно минерализована и вполне обосновано употребление её в качестве столового напитка. Можно использовать в качестве столовых М. в. хлоридно-натриевого типа с минерализацией не выше 4-4,5 г/л (для гидрокарбонатных вод - около 6 г/л).

Лит.: Овчинников А. М., Минеральные воды, 2 изд., М., 1963; Иванов В. В., Невраев Г. А., Классификация подземных минеральных вод, М., 1964; Карта минеральных лечебных вод СССР, масштаб 1 : 4 000 000, М., 1968 (Приложение: Каталог минеральных вод СССР, М., 1969); Вартанян Г. С., Яроцкий Л. А., Поиски, разведка и оценка эксплуатационных запасов месторождений минеральных вод, М., 1972.

Г. С. Вартанян, Л. Г. Гольдфайль.

Материалы предоставлены проектом Рубрикон

© 2001 Russ Portal Company Ltd. © 2001 "Большая Российская энциклопедия" Все права защищены

Copyright © 2001—2005 «Яндекс» О проекте · Статистика · Реклама

Конец формы

Минеральные воды. I) Натуральные М. воды доставляются из многих природных источников, содержащих в растворе различные соли и газы и бьющих на поверхность земли часто с высокой температурой. С древних (римских) времен М. воды употреблялись для лечебных целей. По своим физико-хим. и лечебным свойствам М. воды делятся на 7 групп: 1) индифферентные воды, акратотермы, бедны солями, действуют более высок. температурой (Гаштейн, Рагац, Вармбрунн, Теплиц). 2) Воды поваренной соли (Ишль, Рейхенгаль, Зульца, Зальцунген, Крейцнах). 3) Щелочные воды: а) углекислые, главн. составн. часть углекислота (Аполлинарис), Нарзан); б) щелочно-углекислые, главн. составн. части - углекислый натр и углекислота (Виши, Билин, Боржом, Фахинген); в) щелочно-соляно-кислые (Эмс, Ессентуки). 4) Горькие воды (сернокисл. магнезия, Пюльна, Франц-Иозеф). 5) Воды глауберовой соли (Мариенбад, Карлсбад, Тарасп-Шульс). 6) Сернистые воды (сероводород, сернистые натр, кальций, калий и магний: Аахен, Баден у Вены. Баден [Швейц.]). 7) Железистые воды (двууглекисл. закись железа: Пирмонт, Спа, Эльстер, Франценсбад, Мариенбад). М. воды применяются внутренне для питья и наружно в виде ванн, грязей и ингаляций.-II) Искусственные М. воды изготовляются химическим путем в подражание составным частям натуральных вод, наприм., сельтерской воды насыщением воды углекислотой, и т. п. Первые опыты изготовления искусств. мин. воды в Женеве 1788. Ныне производство искусств. М. вод получило широкое распространение.