Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика микроорганизмов.doc
Скачиваний:
88
Добавлен:
30.05.2014
Размер:
413.7 Кб
Скачать

6.3. Строение и функционирование бактериальной клетки

Биологами XIX – начала ХХ века бактерии расценивались как примитивные организмы с точки зрения клеточной организации, считались крайним пределом жизни. Авторитетный немецкий ученый Кон писал, что бактерии «мельчайшие» и «простейшие» из всех живых форм образуют пограничную линию жизни, за пределами этих форм жизни не существует.

Однако, по мере развития науки была создана более совершенная микроскопическая техника и новые методы исследования. Применение современных методов исследований при изучении бактериальной клетки – электролитная и фазовоконтрастная микроскопия, дифференцированное центрифугирование, применение изотопов – позволили выявить отдельные клеточные структуры и выяснить их биологическую роль.

Бактериальная клетка имеет сложное строго упорядоченное строение. С анатомической точки зрения бактерия морфологически дифференцирована. В ней различают основные и временные структуры. К основным компонентам клетки относят клеточную стенку, цитоплазмотическую мембрану, цитоплазму с рибосомами, различные включения, нуклеоид. Эти структуры встречаются только на определенных стадиях развития бактерий.

Клеточная стенка – прочная, упругая структура, располагающаяся между цитоплазмотической мембраной и капсулой, а у бескапсульных видов бактерий – это внешняя оболочка клетки. клеточная стенка – тонкая бесцветная структура, она не видима в обыкновенный микроскоп без специальной обработки. Клеточная стенка придает бактериям постоянную форму и представляет собой скелет клетки. Ее можно рассматривать при световой микроскопии только у крупных форм бактерий. Например, у серобактерии Beggiatoa mirabilis стенка отчетливо видна и имеет двухконтурное строение. Стенку бактериальной клетки можно рассмотреть при плазмолизе в затемненном поле зрения микроскопа. Клеточной стенки не имеют микоплазмы и L-формы бактерий, для всех остальных прокариот она является обязательной структурой. Стенка клетки составляет в среднем 20 % сухого веса бактерий, толщина ее может достигать до 50 нм и более. Клеточная оболочка выполняет жизненно необходимые функции: защищает бактерию от повреждающих факторов внешней среды, осмотического шока, участвует в обмене веществ и в процессе деления клетки, содержит поверхностные антигены и специфические рецепторы для фагов, осуществляет транспортирование метаболитов. Оболочка бактерии полупроницаема, что обеспечивает избирательное проникновение питательных веществ в клетку из внешней среды. Опорный полимер клеточной стенки называется пептидогликаном (синонимы: мукопептид, муреин – от латинского murus – стенка) образует сетчатую структуру ковалентно связан тейховыми кислотами (от греческого teichos – стенка). При исследовании ультратонких срезов клеточной стенки было установлено, что она равномерно прилегает к подлежащим структурам, пронизана порами, благодаря которым осуществляется поступление различных веществ в клетку и, наоборот. Полученные фотограммы показали, что клеточная стенка характеризуется не одинаковой электроннооптической плотностью, т. е. обладает слоистостью. Стенка обрамляет бактерию, ее толщина и плотность одинаковы по всему периметру микробной клетки. На долю клеточной стенки приходится от 5 до 50 % сухих веществ клетки.

При изучении анатомии микроорганизмов с помощью светового микроскопа возникла необходимость в их окраске. Эта необходимость была реализована Х. Грамом, который в 1884 году предложил метод окраски, названный его именем и широко используемый для дифференцирования бактерий и в наше время. По отношению к окраске по Граму, все микроорганизмы подразделяются на две группы: грамположительные (грампозитивные) и грамотрицательные (грамнегативные). Сущность метода заключается в том, что грамположительные бактерии прочно связывают комплекс генцианвиолета и йода, который не обесцвечивается этанолом и не воспринимает дополнительный краситель фуксин, оставаясь окрашенными в сине-фиолетовый цвет. У грамотрицательных бактерий, упомянутый комплекс, вымывается из тела бактерий этанолом и они окрашиваются при обработке фуксином в красный цвет (цвет фуксина).

Такое окрашивание прокариот по Граму объясняется специфическим химическим составом и строением их клеточной стенки. Клеточная стенка грамположительных бактерий массивная, толстая (20-100 нм), плотно прилегает к цитоплазмотической мембране, большая часть ее химического состава представлена пептидогликаном (40-90 %), который связан с тейховыми кислотами. Стенка грамположительных микроорганизмов содержит в небольшом количестве полисахариды, липиды, белки. Структурные микрофибриллы пептидогликана сшиты прочно, компактно, поры в нем узкие и поэтому фиолетовый комплекс не вымывается, бактерии окрашиваются в сине-фиолетовый цвет.

Строение и состав грамотрицательных микроорганизмов характеризуется некоторыми особенностями. Клеточная стенка у грамнегативных бактерий тоньше, чем у грамположительных и составляет 14-17 нм. Она состоит из двух слоев: внешнего и внутреннего. Внутренний слой представлен пептидогликаном, который в виде тонкой (2 нм) непрерывной сетки опоясывает клетку. Пептидогликан у грамотрицательных бактерий составляет 1-10 %, микрофибриллы его сшиты менее прочно, чем у грамположительных бактерий, поры шире и поэтому комплекс генцианвиолета и йода вымывается из стенки этанолом, микроорганизмы окрашиваются в красный цвет (цвет дополнительного красителя – фуксина). Внешний слой содержит фосфолипиды, монополисахариды, липопротеин и белки. Липополисахарид (ЛПС) клеточных стенок грамотрицательных бактерий, токсичный для животных, получил название эндотоксина. Тейховые кислоты у грамотрицательных бактерий не обнаружены. Промежуток между клеточной стенкой и цитоплазмотической мембраной получил название периплазматического пространства, в котором содержатся ферменты.

Под влиянием лизоцима, пенициллина и других соединений синтез клеточной стенки нарушается и образуются клетки с измененной формой: протопласты – бактерии полностью лишенные клеточной стенки и сферопласты – бактерии с частично разрушенной клеточной стенкой. Протопласты и сферопласты имеют сферическую форму и в 3-10 раз крупнее исходных клеток. В условиях повышенного осмотического давления они могут расти и даже размножаться, а в обычных условиях наступает их лизис и гибель. При снятии ингибирующего фактора протопласты и сферопласты могут реверсировать в исходную форму, иногда трансформируются в L-формы бактерий. L-формы бактерий были выделены в 1935 году в институте Листера. Образуются они в результате воздействия на бактерии различного рода L-трансформирующих агентов (антибиотиков, аминокислот, ультрофиолетовых лучей, рентгенизлучения и т. д.). Это бактерии частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки. По сравнению с протопластами и сферопластами они более устойчивы и обладают способностью к репродукции. Возбудители многих инфекционных болезней могут образовывать L-формы.

Цитоплазмотическая мембрана (плазмолемма) – полупроницаемая, трехслойная многопротеидная структура клетки, отграничивающая цитоплазму от клеточной стенки. Это обязательный компонент клетки, составляющий 8-15 % ее сухого вещества. При разрушении цитоплазмотической мембраны клетка гибнет. В химическом отношении мембрана представляет собой белково-липидный комплекс, состоящий из белков (50-70 %) и липидов (15-50 %). Цитоплазматическая мембрана выполняет важные функции в жизнедеятельности клетки. Она является осмотическим барьером клетки, участвует в процессах метаболизма, роста клетки, осуществляет избирательный перенос молекул органических и не органических веществ и т. д. В процессе роста клетки цитоплазматическая мембрана образует инвагинаты – выпячивания, которые получили название мезосом. Мезосомы хорошо выражены у грамположительных бактерий, хуже у грамотрицательных и совсем плохо у риккетсий и микоплазм. Мезосомы, связанные с нуклеоидом бактерии называются нуклеосомами. Они принимают участие в кариопинезе и кариокенезе микробной клетки. Значение мезосом окончательно не выяснено. Предполагают, что они принимают активное участие в процессе дыхания бактерий, поэтому их по аналогии сравнивают с митохондриями. Возможно, мезосомы выполняют структурную функцию и разделяя клетку на отдельные участки способствуют упорядоченности протекания обменных процессов.

Цитоплазма клетки представляет собой полужидкую массу, занимает основной объем бактерии, содержащий до 90 % воды. Состоит она из гомогенной фракции, называемой цитозолем, включающим структурные элементы – рибосомы, внутрицитоплазмотические мембраны, различного типа образования, нуклеоид. Кроме того в цитоплазме наличествуют растворимые компоненты РНК, вещества субстрата, ферменты, продукты метаболизма.

Цитоплазма образует внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их между собой.

Важнейший структурный компонент клетки проплазмотического типа – нуклеоид, который является аналогом ядра у эукариот. Он свободно располагается в цитоплазме, в центральной зоне клетки, представляет собой замкнутую в кольцо и плотно уложенную на подобие клубка двухнитчатую ДНК. Нуклеоид в отличае от четко оформленного ядра эукариот не имеет ядерной оболочки, ядрышков, основных белков (гистонов). Несмотря на это, считают, что нуклеоид – дифференцированная структура. В зависимости от функционального состояния клетки нуклеоид может быть дискретным и состоять из отдельных фрагментов. Дискретность его объясняется делением клетки и репликацией молекулы ДНК. ДНК нуклеоида является носителем генетической информации бактериальной клетки. При световой микроскопии нуклеоид может быть выявлен в результате окраски бактерий специальными методами (по Фельгену, по Романоскому-Гимзе). Кроме нуклеоида в клетках многих видов прокариот обнаружены внехромосомальные факторы наследственности – плазмиды, которые представляют собой молекулы ДНК, способные к автономной репликацией.

К органоидам клетки относят рибосомы – сферической формы рибонуклеиновые частицы диаметром 15-20 нм. Клетка прокариотического типа может содержать от 5 до 20 тысяч рибосом. Рибосома состоит из малой и большой субъединиц, обладающих по Свербергу константами сидиментации от 30 и 50 S, соответственно. Одна молекула матричной РНК обычно объединяет несколько рибосом наподобие бус, нанизанных на нить. Такие объединения рибосом называют полисомами. Рибосомы обладают высокой синтезирующей активностью, они синтезируют необходимые для жизнедеятельности микробной клетки белки.

В цитоплазме бактерий ваыявлены различного рода включения, которые бывают твердыми, жидкими и газообразными. Они представляют собой запасные питательные вещества (полисахариды, липиды, отложения серы и др.) и продукты обмена веществ.

Капсула – слизистая структура, толщиной более 0,2 мкм, связанная с клеточной стенкой и четко отграниченная от окружающей среды. Она выявляется при световой микроскопии в случае окрашивания бактерий специальными методами (по Ольту, Михину, Бурри-Гинсу). Многие бактерии образуют микрокапсулу – слизистое образование менее 0,2 мкм, выявленное только при электронной микроскопии или же химическими и иммунохимическими методами. Капсула не является обязательной структурой клетки, утрата ее не вызывает гибели бактерии. От капсулы необходимо отличать слизь – мукоидные экзополисахариды. Слизистые вещества откладываются на поверхности клетки, часто превосходя ее диаметр и не имеет четких границ.

Вещество капсул прокариот состоит в основном из гомо- или гетерополисахарид. У некоторых бактерий (например, лейконостока) в капсулу заключено несколько микробных клеток. Заключенные в одну капсулу бактерии представляют собой скопления называемые зоогелями.

Капсула выполняет важные биологические функции. В ней локализуются капсульные антигены, определяющие вирулентность, специфичность и иммуногенность бактерий. Капсула защищает микробную клетку от механических воздействий, высыхания, заражения фагами, токсических веществ, фагоцитоза. У некоторых видов бактерий, в том числе и патогенных, способствует прикреплению клеток к субстрату.

Жгутики являются органоидами движения бактерий. Они представляют собой тонкие, длинные, нитевидные структуры, состоящие из белка флагеллина (от латинского flagellum – жгутик). Этот белок обладает антигенной специфичностью. Длина жгутиков превышает длину бактериальной клетки в несколько раз и составляет 3-12 мкм, а толщина 12-20 нм. Жгутики прикреплены к цитоплазмотической мембране и клеточной стенке специальными дисками. Выявляют жгутики с помощью электронной микроскопии или же в световом микроскопе, но после обработки препаратов специальными методами. Жгутики не являются жизненноважными структурами клетки. Количество жгутиков различно у различных видов бактерий (от 1 до 50) и места их локализации тоже различны, но стабильны для каждого вида. В зависимости от локализации жгутиков различают: монотрихи – бактерии с одним полярно расположенным жгутиком; амфитирихи – бактерии с двумя полярно расположенными жгутиками, или по пучку жгутиков на каждом конце; лофотрихи – бактерии с пучком жгутиков на одном конце клетки; перитрихи – бактерии с множеством жгутиков, располагающихся по всему периметру клетки. Бактерии не имеющие жгутиков называются атрихиями. Жгутики типичны для плавающих палочковидных и извитых форм и в виде исключения встречаются у кокков. Монотрихи и лофотрихи движутся со скоростью 50 мкм в секунду. Обычно бактерии движутся беспорядочно. Под влиянием факторов внешней среды бактерии способны к направленным формам движения – таксисам. Таксис может быть положительным и отрицательным. Различают хемотаксис – обусловлен разницей концентрации химических веществ в среде, аэротаксис – кислорода, фототаксис – интенсивности освещения, магнитотаксис – характеризуется способностью микроорганизмов ориентироваться в магнитном поле.

Пили (ворсинки) – нитевидные образования более короткие, чем жгутики. Длина их достигает от 0,3 до 10 мкм, толщина 3-10 нм. Пили берут начало от цитоплазмотической мембраны, они обнаружены у подвижных и не подвижных форм микроорганизмов. Выявить их можно только с помощью электронной микроскопии. На поверхности бактериальной клетки может быть от 1-2 до нескольких десятков, сотен и даже тысяч пилей. Пили состоят из белка пилина, они обладают антигенной активностью.

Различают пили общего типа и половые. Первые ответственны за адгезию, т. е. прикрепление бактерий к поражаемой клетке, питание, водно-солевой обмен, слипание бактерий в агломераты, вторые – передачу наследственного материала (ДНК) от донора к реципиенту. У одного и того же вида бактерий могут быть пили обоих типов.

Споры (эндоспоры) – это особая форма покоящихся клеток, характеризующаяся резким снижением уровня метаболизма и высокой резистентностью. Споры образуются при неблагоприятных условиях существования бактерий. Внутри одной клетки образуется одна спора. Спорообразование наблюдается при дефиците питательных веществ, изменении рН, недостатке С, N, Р, высушивании, накоплении в окружающей клетку среде продуктов метаболизма и т. д. Споры характеризуются репрессией генома, анаболизмом, малым содержанием воды в цитоплазме, повышением концентрации катионов кальция, появление дипиколиновой кислоты.

Споры в поле зрения светового микроскопа имеют вид овальных, сильно преломляющих свет образований размером 0,8-1,5 мкм. Бактерии у которых размер споры не превышает диаметр клетки называются бациллами, а у которых превышает – клостридиями. Спора в клетке может располагаться центрально, ближе к концу – субтерминально, на конце бактерии – терминально. Строение споры сложное, но однотипное у разных видов бактерий. Центральная часть споры называется спороплазмой, в состав ее входят нуклеиновые кислоты, белки и дипиколиновая кислота. В спороплазме располагаются нуклеоид, рибосомы и нечетко выраженные мембранные структуры. Спороплазму обрамляет цитоплазмотическая мембрана, за которой следует зачаточный пептидогликановый слой, затем располагается массивный слой коры или иначе кортекса. На поверхности кортекса имеется наружная мембрана. Снаружи спора одета многослойной оболочкой, которая вместе со специфическими элементами споры и дипиколинатом кальция обуславливают ее устойчивость. Основное назначение спор – сохранение бактерий в неблагополучных условиях внешней среды. Споры устойчивы к действию высоких температур, химических веществ, могут длительное время существовать в покоящемся состоянии десятками и даже сотнями лет.