Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Mechanical Properties of Ceramics and Composites

.pdf
Скачиваний:
340
Добавлен:
15.11.2014
Размер:
6 Mб
Скачать

230

Chapter 3

39.S. W. Freiman, J. J. Mecholsky, Jr., and R. W. Rice. Fracture of ZnSe and As2S3 Laser Window Materials. Proc. 4th Annual Conf. on Infrared Laser Window Materials (C. R. Andrews and C. L. Stecker eds.). Air Force Matls. Lab WPAFB, Ohio, 1975, pp. 697–715.

40.R. C. Pohanka, R. W. Rice, and B. E. Walker, Jr. Effect of Internal Stress on the Strength of BaTiO3. J. Am. Cer. Soc. 59(1–2):71–74, 1976.

41.B. E. Walker, Jr., R. W. Rice, R. C. Pohanka, and J. R. Spann. Densification and

Strength of BaTiO3 with LiF and MgO Additives. J. Am. Cer. Soc. 55(3):272–277, 1976.

42.R. C. Pohanka, S. W. Freiman, and B. A. Bender. Effect of the Phase Transformation on the Fracture Behavior of BaTiO3. J. Am. Cer. Soc. 61(1–2): 72–75, 1978.

43.R. C. Pohanka, S. W. Freiman, and R. W. Rice. Fracture Processes in Ferroic Materials. Ferroelectrics 28:337–342, 1980.

44.V. C. S. Prasad and E. C. Subbarao. Deformation Studies on BaTiO3 Single Crystals. Appl. Phys. Let. 22(8):424–425, 1973.

45.Y. V. Zabara, A. Y. Kudzin, and O. I. Fomichev. Dislocations in BaTiO3 Single Crystals. Sov. Phys. Solid State 15(9):1852–1853, 1974.

46.R. W. Rice. CaO: II, Properties. J. Am Cer. Soc. 52(8):428–436, 1969.

47.R. W. Rice. Deformation, Recrystallization, Strength, and Fracture of PressForged Ceramic Crystals. J. Am. Cer. Soc. 55(2):90–97, 1972.

48.R. W. Rice, J. G. Hunt, G. I. Friedman, and J. L. Sliney. Identifying Optimum Parameters of Hot Extrusions. Boeing Co. Final Report for NASA, Contract NAS 7- 276, 1968.

49.R. W. Rice. Machining, Surface Work Hardening, and Strength of MgO. J. Am. Cer. Soc. 56(10):536–541, 1973.

50.R. W. Rice. Strength and Fracture of Dense MgO. Ceramic Microstructures 76 (R. M. Fulrath and J. A. Pask, eds.). John Wiley, New York, 1968, pp. 579–587.

51.R. W. Rice. Strength and Fracture of Hot-Pressed MgO. Proc. Brit. Cer. Soc. 20:329–363, 1972.

52.R. W. Rice. Effects of Hot Extrusion, Other Constituents, and Temperature on the Strength and Fracture of Polycrystalline MgO. J. Am. Cer. Soc. 76(12):3009–3018, 1995.

53.R. M. Spriggs and T. Vasilos. Effect of Grain Size on Transverse Bend Strength of Alumina and Magnesia. J. Am. Cer. Soc. 46(5):224–228, 1961.

54.T. Vasilos, J. B. Mitchell, and R. M. Spriggs. Mechanical Properties of Pure, Dense Magnesium Oxide as a Function of Temperature and Grain Size. J. Am. Cer. Soc. 47(12):606–610, 1964.

55.A. G. Evans and R. W. Davidge. The Strength and Fracture of Fully Dense Polycrystalline Magnesium Oxide. Phil. Mag. 162(20):373–388, 1969.

56.W. B. Harrison. Influence of Surface Condition on the Strength of Polycrystalline MgO. J. Am. Cer. Soc. 47(11):574–578, 1964.

57.A. Nishida, T. Shimamura, and Y. Kohtoku. Effect of Grain Size on Mechanical Properties of High-Purity Polycrystalline Magnesia. Nippon Seramikkusu Kyoki Gakuyustu Konbunshi 98(427):412–415, 1978.

58.R. Burns and G. T. Murray. Plasticity and Dislocation Etch Pits in CaF2. J. Am. Cer. Soc. 45(5):251–252, 1962.

Grain Dependence of Ceramic Tensile Strengths at 22°C

231

59.R. Newberg and J. Pappis. Fabrication of Fluoride Laser Windows by Fusion Casting. Proc. 5th Annual Conf. on Infrared Laser Window Materials (C. R. Andrews and C. L. Stecker, eds.). Air Force Materials Lab WPAFB, Ohio, 1976, pp. 1065–1078.

60.S. K. Dickinson. Infrared Laser Window Materials Property data for ZnSe, KCl,

NaCl, CaF2, SrF2, BaF2. Air Force Cambridge Res. Lab. Report AFCRL-TR-75- 0318, 6/6/1975.

61.S. W. Freiman, P. Becher, R. Rice, and K. Subramanian. Fracture Behavior in Alkaline Earth Fluorides. Proc. 5th Annual Conf. on Infrared Laser Window Materials (C. R. Andrews and C. L. Stecker, eds.). Air Force Matls. Lab WPAFB, OH, 1976, pp. 519–533.

62.R. M. Spriggs, L. A. Brissette, and T. Vasilos. Pressure Sintered Nickel Oxide. Am. Cer. Soc. Bul. 43(8):572–577, 1964.

63.W. B. Harrison. Fabrication and Fracture of Polycrystalline NiO. Honeywell Res. Cen. Third Interim Report for Contract DA-11-022-ORD-3441, 3/1965.

64.R. M. Spriggs, T. Vasilos, and L. A. Brissette. Grain Size Effects in Polycrystalline Ceramics. Materials Science Research, The Role of Grain Boundaries and Surfaces in Ceramics 3 (W. W. Kriegel and H. Palmour III, eds.). Plenum Press, New York, 1966, pp. 313–353.

65.F. P. Knudsen. Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size. J. Am. Cer. Soc. 42(8):376–388, 1959.

66.C. E. Curtis and J. R. Johnson. Properties of Thorium Oxide Ceramics. J. Am. Cer. Soc. 40(2):63–68, 1957.

67.R. W. Rice. Unpublished data.

68.W. H. Rhodes, G. C. Wei, E. A. Trickett, M. R. Pascucci, S. Natansohn, and C. Brecher. Lanthana-Doped Yttria as an Optical Ceramic. GTE Lab. Annual Report TR 0095 05-90-879 for contract N60530-86-C-0022, 6/15/1990.

69.C. R. Kennedy and G. Bandyopadhyay. Thermal-Stress Fracture and Fractography in UO2. J. Am. Cer. Soc. 59(3–4):176–177, 1976.

70.M. D. Burdick and H. S. Parker. Effect of Particle Size on Bulk Density and Strength Properties of Uranium Dioxide Specimens. J. Am. Cer. Soc. 39(5):181-, 1956.

71.F. P. Knudsen, H. S. Parker, and M. D. Burdick. Flexural Strength of Specimens Prepared from Several Uranium Dioxide Powders; Its Dependence on Porosity and Grain Size and the Influence of Additions of Titania. J. Am. Cer. Soc. 43(12):641–647, 1960.

72.A. G. Evans, and R. W. Davidge. The Strength and Fracture of Stoichiometric Polycrystalline UO2. J. Nuc. Mat. 33:249–260, 1969.

73.R. F. Canon, J. T. A. Roberts, and R. J. Beals. Deformation of UO2 at High Temperatures. J. Am. Cer. Soc. 54(2):105–112, 1971.

74.R. W. Rice, and W. J. McDonough. Ambient Strength and Fracture of ZrO2. Mechanical Behavior of Materials. Soc. Mat. Sci., Japan 4:394–403, 1972.

75.R. W. Rice. Strength–Grain Size Behavior of ZrO2 at Room Temperature. J. Mat. Sci. Lett. 13:1408–1412, 1994.

76.J. W. Adams, R. Ruh, and K. S. Mazdiyasni. Young’s Modulus, Flexural Strength,

and Fracture of Yttria-Stabilized ZrO2 versus Temperature. J. Am. Cer. Soc. 80(4):903–908, 1997.

232

Chapter 3

77.K. F. H. Ahlborn, Y. Kagawa, and A. Okura. Observation of the Influence of Mi-

crocracks on the Crack Propagation Inside of Transparent ZrO2. Ceramics To- day—Tomorrow’s Ceramics 66C (P. Vincenzini, ed.). Elsevier, 1991, pp. 1857–1864.

78.J. R. Hague. The Effect of Stabilizer on Properties of ZrO2. Am. Cer. Soc. Bul. 45(9):826, 1966.

79.A. G. King and Fuchs. Effect of Composition on the Strength of Magnesia Stabilized Zirconia. Am. Cer. Soc. Bul. 47(4):427, 1968.

80.R. P. Ingel, D. Lewis, B. A. Bender, and R. W. Rice. Temperature Dependance of

Strength and Fracture Toughness of ZrO2 Single Crystals. J. Am. Cer. Soc. 65(9):C-150–152, 1982.

81.R. C. Garvie, R. R. Hughan and R. T. Pascoe. Strengthening of Lime-Stabilized Zirconia by Post Sintering Heat Treatments. Processing of Crystalline Ceramics, Mat. Sci. Res. 11 (H. Palmour III, R. F. Davis, and T. M. Hare eds). Plenum Press, New York 1978, pp. 263–272.

82.J. F. Jue, and A. V. Virkar. Fabrication, Microstructural Characterization, and Mechanical Properties of Polycrystalline t-Zirconia. J. Am. Cer. Soc. 73(12):3650–3657, 1990.

83.R. W. Rice, K. R. McKinney, and R. P. Ingel. Grain Boundaries, Fracture, and Heat Treatment of Commercial Partially Stabilized Zirconia. J. Am. Cer. Soc. 64(12):C- 175–177, 1981.

84.J. T. Bailey and R. Russell, Jr. Preparation and Properties of Dense Spinel Ceramics in the MgAl2O4-Al2O3 System. Trans. of Brit. Cer. Soc. 68(4):159–164, 1969.

85.J. T. Bailey and R. Russel, Jr. Magnesia-Rich MgAl2O4 Spinel Ceramics. Am. Cer. Soc. Bul. 50(5):493–496, 1971.

86.R. W. Rice and W. J. McDonough. Ambient Strength and Fracture Behavior of MgAl2O4. Mechanical Behavior of Materials, Soc. Mats. Sci. Japan 4:422–431, 1972.

87.D. M. Chay, H. Palmour III, and W. W. Kreigel. Microstructure and Room-Tem- perature Mechanical Properties of Hot-Pressed Magnesium Aluminate as Described by Quadratic Multivariable Analysis. J. Am. Cer. Soc. 51(1): 10–16, 1968.

88.W. H. Rhodes, P. L. Berneburg, and J. E. Niesse. Development of Transparent Spinel. AVCO Corp. Final Report for Army Matls. and Mechanics Research Center contract DAAG-46-69-C-0113, 1970.

89.W. G. Jacobs. Synthesis of MgAl2O4 Spinel, M. S. thesis, Rutgers State University, 1976.

90.W. T. Bakker and J. G. Lindsay. Reactive Magnesia Spinel, Preparation and Properties. Am. Cer. Soc. Bul. 46(11):1094–1097, 1967.

91.T. Kanai, Z.-E. Nakagawa, Y. Ohya, M. Hasegawa, and K. Hamano. Effect of Composition on Sintering and Bending Strength of Spinel Ceramics. Report of the Res. Lab. of Eng. Mat., Tokyo Inst. of Tech 13:75–83, 1987.

92.R. L. Gentilman. Fusion-Casting of Transparent Spinel. Am. Cer. Soc. Bul. 60(9):906–909, 1981.

93.T. I. Hou and W. M. Kriven. Mechanical Properties and Microstructure of Ca2SiO4- CaZrO3 Composites. J. Am. Cer. Soc. 77(1):65–72, 1994.

94.J. S. Moya, P. Pena, and S. De Aza. Transforming Toughening in Composites Containing Dicalcium Silicate. J. Am. Cer. Soc. 68(9):C-259-62, 1985.

Grain Dependence of Ceramic Tensile Strengths at 22°C

233

95.J. A. Coppola and R. C. Bradt. Measurement of Fracture Surface Energy of SiC. J. Am. Cer. Soc. 55(9):455–460, 1972.

96.S. Prochazka and R. J. Charles. Strength of Boron-Doped Hot-Pressed Silicon Carbide. Am. Cer. Soc. Bull. 52(12):885–891, 1973.

97.T. D. Gulden. Mechanical Properties of Polycrystalline β-SiC. J. Am. Cer. Soc. 52(11):585–590, 1969.

98.S. G. Seshardi, M. Srinivasan, and K. Y. Chia. Microstructure and Mechanical Properties of Pressureless Sintered Alpha-SiC. Cer. Trans. 2, Silicon Carbide ’87 J. D. Cawley and C. E. Semler, eds.). Am. Cer. Soc., Westerville, OH, 1989, pp. 215–226.

99.Y. Takeda, and K. Nakamura. Effects of Additives on Microstructure and Strength of Dense Silicon Carbide. Proc. 23d. Japan Congress on Materials Science. Soc. Mat. Sci. Japan, 1980, pp. 215–219.

100.D. C. Larsen, J. W. Adams, L. R. Johnson, A. P. S. Teotia, and L. G. Hill. Ceramic Materials for Advanced Heat Engines, Technical and Economic Evaluation. Noyes, Park Ridge, NJ, 1985.

101.R. W. Rice, S. W. Freiman, R. C. Pohanka, J. J. Mecholsky, Jr., and C. Cm. Wu. Microstructural Dependence of Fracture Mechanics Parameters in Ceramics. Frac. Mech. Cer. 4 (R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds.). Plenum Press, New York, 1978, pp. 849–876.

102.R. W. Rice. Fractographic Determination of KIC and Effects of Microstructural Stresses in Ceramics. Fractography of Glasses and Ceramics. Ceramic Trans. 17 (J. R. Varner and V. D. Frechette, eds.). Am. Cer. Soc., Westerville, OH, 1991, pp. 509–545.

103.G. V. Srinivasan and V. Venkateswaran. Tensile Strength Evaluation of Polycrystalline SiC Fibers. Cer. Eng. Sci. Proc. 14(7–8):563–572, 1993.

104.M. J. Koczak, K. Prewo, A. Mortensen, S. Fishman, M. Barsoum, and R. Gottschall. Inorganic Composite Materials in Japan: Status and Trends. ONRFE Sci. Monograph M7, 11/1989.

105.T. Shimo, I. Tsukada, T. Seguchi, and K. Okamura. Effect of Firing Temperature on Thermal Stability of Low-Oxygen SiC Fiber. J. Am. Cer. Soc. 81(8):2109–2115, 1998.

106.A. Elkind and M. W. Barsoum. Grain Growth and Strength Degradation of SiC Monofilaments at High Temperatures. J. Mat. Sci. 31:6119–6123, 1996.

107.X.-J. Ning, P. Pirouz, and S. C. Farmer. Microchemical Analysis of the SCS-6 Silicon Carbide Fiber. J. Am. Cer. Soc. 76(8):2033–2041, 1993.

108.R. T. Bhatt and D. R. Hull. Microstructural and Strength Stability of CVD SiC Fibers in Argon Environments. Cer. Eng. Sci. Proc. 12(10):1832–1844, 1991.

109.R. T. Bhatt and D. R. Hull. Strength-Degrading Mechanisms for Chemically-Va- por-Deposited SCS-6 Silicon Carbide Fibers in Argon Environments. J. Am. Cer. Soc. 81(4):957–964, 1998.

110.S. R. Nutt and F. E. Wawner. Silicon Carbide Filaments: Microstructure. J. Mat. Sci. 20:1953–1960, 1985.

111.R. W. Rice, and K. R. McKinney. Residual Stresses and Scaling CNTD SiC to Larger Sizes. J. Mat Sci. Lett. 1:159–162, 1982

112.S. Dutta, R. W. Rice, H. C. Graham, and M. C. Mendiratta. Characterization and Properties of Controlled Nucleation Thermochemical Deposition (CNTD)- Silicon Carbide. J. Mat. Sci. 15:2183–2191, 1980.

234

Chapter 3

113.D. B. Miracle, and H. A. Lipsitt. Mechanical Properties of Fine-Grained Substoichiometric Titanium Carbide. J. Am. Cer. Soc. 66(8):592–597, 1983.

114.V. P. Bulychev, R. A. Andrievskii, and L. B. Nezhevenko. Theory and Technology of Sintering, Thermal, and Chemicothermal Treatment Process, The Sintering of Zirconium Carbide. Transl. from Poroshkovaya Metallurgiya 4(172):38–42, 4/1977.

115.J. A. Savage, C. J. H. Worst, C. S. J. Pickels, R. S. Sussmann, C. G. Sweeney, M. R. McClymont, J. R. Brandon, C. N. Dodge, and A. C. Beale. Properties of FreeStanding CVD Diamond Optical Components. Window and Dome Technologies and Materials 3060. SPIE Proc. (R. W. Tustison, ed.), 4/1997, pp. 144–159.

116.A. Wronski and A. Fourdeux. Slip-Induced Fracture of Polycrystalline Cr, Mo, and W: The Group Via BCC Transition Metals. Intl. J. Fract. Mech. 1(2):73–80, 1965.

117.J. R. Stevens. Effect of Surface Condition on the Ductility of Tungsten. High Temperature Materials II (G. M. Ault, W. F. Barclay, and H. P. Munger, eds.). Interscience, New York, 1962, pp. 125–137.

118.R. N. Orava. The Effect of Grain Size on the Yielding and Flow of Molybdenum. Refractory Metals and Alloys IV, Research and Development 1 (R. I. Jaffee, G. M. Ault, J. Maltz, and M. Semchyshen, eds.). Gordon and Breach, New York, 1966, pp. 117–140.

119.R. H. Forster and A. Gilbert. The Effect of Grain Structure on the Fracture of Recrystallized Tungsten Wire. J. Less Com. Met. 20:315–325, 1970.

120.A. P. Valintine, and D. Hull. Effect of Temperature on the Brittle Fracture of Polycrystalline Tungsten. J. Less Com. Met. 17:353–361, 1969.

121.D. B. Binns and P. Popper. Mechanical Properties of Some Commercial Alumina Ceramics. Proc. Brit. Cer. Soc. 6:71–79, 1966.

122.B. R. Steele, F. Rigby, and M. C. Hesketh. Investigations on the Modulus of Rupture of Sintered Alumina Bodies. Proc. Brit. Cer. Soc. 6:83–93, 1966.

123.H. Neuber and A. Wimmer. Experimental Investigations of the Behavior of Brittle Materials at Various Ranges of Temperature. AFML-TR-68-23, 1968.

124.R. F. Gruszka, R. E. Mistler, R. B. Runk. Effect of Various Surface Treatments on the Bend Strength of High Alumina Substrates. Am. Cer. Soc. Bul. 49(6):575–579, 1970.

125.A. G. Evans and G. Tappin. Effects of Microstructure on the Stress to Propagate Inherent Flaws. Proc. Brit. Cer. Soc. 20:275–297, 1972.

126.M. J. Hanney, and R. Morrell. Factors Influencing the Strength of a 95% Alumina Ceramic. Proc. Brit. Cer. Soc. 32:277–290, 1982.

127.M. McNamee and R. Morrell. Textural Effects in the Microstructure of a 95% Alumina Ceramic and Their Relationship to Strength. Sci. of Cer. 12:629–634, 1984.

128.R. M. Gruver, W. A. Sotter, and H. P. Kirchner. Fractography of Ceramics. Department of the Navy Report, Contract N00019-73-C-0356, 1974.

129.W. B. Crandall, D. H. Chung, and T. J. Gray. The Mechanical Properties of UltraFine Grain Hot Pressed Alumina. Mechanical Properties of Engineering Ceramics (W. W. Kriegel and H. Palmour III, eds.). Wiley Interscience, New York, 1961, pp. 349–376.

130.E. M. Passmore, R. M. Spriggs, and T. Vasilos. J. Am. Cer. Soc. 48(1):1–7, 1965.

Grain Dependence of Ceramic Tensile Strengths at 22°C

235

131.P. Chantikul, S. J. Bennison, and B. R. Lawn. Role of Grain Size in the Strength and R-Curve Properties of Alumina. J. Am. Cer. Soc. 73(8):2419–2427, 1990.

132.L. Sztankovics. The Effect of Grain Size and Porosity on the Bending Strength and Wear Resistance of Alumina Ceramics. Epitoanyag 42(3):88–95, 1990.

133.J.-M. Ting, R. Y. Lin, and Y.-H. Ko. Effect of Powder Characteristics on Microstructure and Strength of Sintered Alumina. Am. Cer. Soc. Bul. 70(7):1167–1172 (1991).

134.H. Tomaszewski. Influence of Microstructure on the Thermomechanical Properties of Alumina Ceramics. Cer. Intnl. 18:51–55, 1992.

135.T. Koyama, A. Nishiyama, and K. Niihara. Effect of Grain Morphology and Grain

Size on the Mechanical Properties of Al2O3 Ceramics. J. Mat. Sci. 29:3949–3954, 1994.

136.D. Kovar and M. J. Readey. Grain Size Distribution and Strength Variability of High-Purity Alumina. J. Am. Cer. Soc. 79(2):305–312, 1996.

137.A. Krell and P. Blank. Grain Size Dependence of Hardness in Dense Submicrometer Alumina. J. Am. Cer. Soc. 78(4):1118–1120, 1993.

138.R. W. Rice. Specimen Size–Tensile Strength Relations for a Hot-Pressed Alumina and Lead Zirconate/Titanate. Am. Cer. Soc. Bul. 66(5):794–798, 1987.

139.G. E. Gazza, J. R. Barfield. and D. L. Preas. Reactive Hot Pressing of Alumina with Additives. Am. Cer. Soc. Bul. 48(6):605–610, 1969.

140.C. O. McHugh, T. J. Whalen, and J. Humenik, Jr. Dispersion-Strengthened Aluminum Oxide. J. Am. Cer. Soc. 49(9):486–491, 1966.

141.D. T. Rankin, J. J. Stiglich, D. R. Petrak, and R. Ruh. Hot-Pressing and Mechani-

cal Properties of Al2O3 with an Mo-Dispersed Phase. J. Am. Cer. Soc. 54(6):277–281, 1971.

142.R. W. Rice. Effects of Ceramic Microstructural Character on Machining Direc- tion–Strength Anisotropy. Machining of Advanced Materials (S. Johanmir, ed.). NIST Special Pub. 847, US Govt. Printing Office, Washington DC, 1993, pp. 185–204.

143.R. W. Rice. Correlation of Machining–Grain-Size Effects on Tensile Strength with Tensile Strength–Grain-Size Behavior. J. Am. Cer. Soc. 76(4):1068–1070, 1993.

144.R. W. Rice. Porosity Effects on Machining Direction–Strength Anisotropy and Fracture Mechanisms. J. Am. Cer. Soc. 77(8):2232–2236, 1994.

145.J. B. Wachtman, Jr., and L. H. Maxwell. Strength of Synthetic Single Crystal Sapphire and Ruby as a Function of Temperature and Orientation. J. Am. Cer. Soc. 42(91:432–433, 1959.

146.A. H. Heuer and J. P. Roberts. The Influence of Annealing on the Strength of Corundum Crystals. Proc. Brit. Cer. Soc. 6:17–27, 1966.

147.G. Orange, D. Turpin-Launay, P. Goeuriot, G. Fantozzi, and F. Thevenot. Mechan-

ical Behavior of a Al2O3-AION Composite Ceramic Material (Aluminalon). Sci. Cer. 12:661–666, 1984.

148.A. Harabi and T. J. Davies. Mechanical Properties of Sintered Alumina-Chromia Refractories. Trans. Brit. Cer. Soc. 94(2):79–84, 1995.

149.R. J. Charles. Static Fatigue:Delayed Fracture. Studies of the Brittle Behavior of Ceramic Materials, Technical Report No. ASD-TR-628. Aeronautical Systems Division, Wright Patterson AFG, OB, 1962, pp. 370–404.

236

Chapter 3

150.J. E. Bailey and H. A. Barker. Ceramic Fibers for the Reinforcement of Gas Turbine Blades. Ceramics in Severe Environments, Materials Science Researchs (W. W. Kriegel and H. Palmour III, eds.). Plenum Press, New York, 1971, pp. 341–359.

151.H. D. Blakelock, N. A. Hill, S. A. Lee, and C. Goatcher. The Production and Properties of Polycrystalline Alumina Rods and Fibers. Proc. Brit. Cer. Soc. 15:69–83, 1970.

152.P. Hing. Spatial Distribution of Tungsten on the Physical Properties of Al2O3-W Cermets. Sci. of Cer. 12:87–94, 1984.

153.S. Hori, R. Kurita, M. Yoshimura, and S. Somiya. Suppressed Grain Growth in Fi-

nal-Stage Sintering of Al2O3 with Dispersed ZrO2 Particles. J. Mat. Sci. Lett. 4:1067–1070, 1985.

154.F. F. Lange and M. M. Hirlinger. Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions. J. Am. Cer. Soc. 67(3):164–168, 1984.

155.N. D. Nazarenko, V. F. Nechitailo, and N. I. Vlasko. The Manufacture and Properties of Oxide Fibers. Soviet Pwd. Metall. 4:265–267, 1969.

156.F. H. Simpson. Continuous Oxide Filament Synthesis (Devitrification). Boeing Co. Final report for contract AFML-TR-71-135, 1971.

157.B. H. Hamling. Metal Oxides. British Patent No. 1,144,033, 1969.

158.J. D. Birchall. The Preparation and Properties of Polycrystalline Aluminum Oxide Fibers. Trans. J. Br. Cer. Soc. 82:143–145, 1983.

159.A. K. Dhingra. Advances in Inorganic Fiber Developments. Contemporary Topics in Polymer Science, 5 (E. J. Vandenberg, ed.). Plenum Press, New York, 1984, pp. 227–260.

160.J. C. Romine. New High-Temperature Ceramic Fiber. Cer. Eng. Sci. Proc. 8(7–8):755–765, 1987.

161.M. H. Stacey. Developments in Continuous Alumina-Based Fibers. Trans. J. Br. Cer. 87:168–172, 1977.

162.R. N. Fetterolf. Development of High Strength, High Modulus Fibers. Babcock & Wilcox Report No. 7953 for contract AFM:-TR-70-197, 1970.

163.H. G. Sowman and D. D. Johnson. Ceramic Oxide Fibers. Cer. Eng. Sci. Proc. 6(9):1221–1230, 1985.

164.Method and Apparatus for Making Fibers, Patent Specifications. British Patent No. 1,141,207, 1969.

165.K. Jakus and V. Tulluri. Mechanical Behavior of a Sumitomo Alumina Fiber at Room and High Temperature. Cer. Eng. Sci. Proc. 10(9–10):1338–1349, 1989.

166.J. T. A. Pollock and G. F. Hurley. Dependence of Room Temperature Fracture Strength on Strain-Rate in Sapphire. J. Mat. Sci. 8:1595–1602, 1973.

167.P. Shahinian. High-Temperature Strength of Sapphire Filament. J. Am. Cer. Soc. 54(1):67–68, 1971.

168.S. A. Newcomb and R. E. Tressler. Slow Crack Growth of Sapphire at 800 to 1500°C. J. Am. Cer. Soc. 76(10):605–612, 1993.

169.B. A. Chandler, E. C. Duderstadt, and J. F. White. Fabrication and Properties of Extruded and Sintered BeO. J. Nuc. Mat. 8(3):329–347, 1963.

170.R. E. Fryxell and B. A. Chandler. Creep, Strength, Expansion, and Elastic Moduli of Sintered BeO as a Function of Grain Size, Porosity, and Grain Orientation. J. Am. Cer. Soc. 47(6):283–291, 1964.

Grain Dependence of Ceramic Tensile Strengths at 22°C

237

171.G. G. Bentle and R. N. Kniefel. Brittle and Plastic Behavior of Hot-Pressed BeO.

J.Am. Cer. Soc. 48(11):570–577, 1965.

172.K. Veevers. Recrystallization of Machined Surfaces of Beryllium Oxide. J. Australian Cer. Soc. 5(1):16–20, 1969.

173.J. Greenspan. Development of a High-Strength Beryllia Material. Army Materials and Mechanics Research Center Report No. AMMRC-TR-72-16, 1972.

174.J. S. O’Neill and D. T. Livey. Fabrication and Property Data for Two Samples of Beryllium Oxide. United Kingdom Atomic Energy Authority Research Group Report AERE-R4912, 1965.

175.N. A. Hill, J. S. O’Neill, and D. T. Livey. The Properties of BeO containing up to 15 w/o SiC and up to 2 w/o MgO. Proc. Brit. Cer. Soc. 7:221–232, 1967.

176.H. P. Kirchner and R. M. Gruver. Strength-Anisotropy-Grain Size Relations in Ceramic Oxides. J. Am. Cer. Soc. 53(5):232–236, 1970.

177.K. Tsukuma and M. Shimada. Strength, Fracture Toughness and Vickers Hardness

of CeO2-Stabilized Tetragonal ZrO2 Polycrystals (Ce-TZP). J. Mat. Sci. 20:1178–1184, 1985.

178.R. C. Garvie. Partially Stabilized Zirconia Ceramics. US Patent 4,279,655, 1981.

179.J. Wang, M. Rainforth, and R. Stevens. The Grain Size Dependence of the Mechanical Properties in TZP Ceramics. Br. Cer. Trans. J. 88(1):1–6, 1988.

180.J. Wang, X. H. Zheng, and R. Stevens. Fabrication and Microstructure-Mechanical Property Relationships in Ce-TZPs. J. Mat. Sci. 27:5348–5356, 1992.

181.T. Masaki. Mechanical Properties of Toughened ZrO2-Y2O3 Ceramics. J. Am. Cer. Soc. 69(8):638–640, 1986.

182.N. L. Hecht, S. M. Goodrich, D. E. McCullum, and P. P. Yaney. Characterization Studies of Transformation-Toughened Ceramics. Am. Cer. Soc. Bul. 71(6): 955–959, 1992.

183.K. Tsukuma. Mechanical Properties and Thermal Stability of CeO2 Containing Tetragonal Zirconia Polycrystals. Am Cer. Soc. Bul. 65(10):1386–1389, 1986.

184.C. Puchner, W. Kladnig, and G. Gritzner. Mechanical Properties of CeO2-doped ZrO2. J. Mat. Sci. Lett. 9:94–96, 1990.

185.M. Kihara, T. Ogata, K. Nakamura, and K. Kobayashi. Effects of Al2O3 Addition on Mechanical Properties and Microstructure of Y-TZP. J. Cer. Soc. Jpn., Intl. Ed. 96:635–642, 1998.

186.D. B. Marshall, F. F. Lange, and P. D. Morgan. High-Strength Zirconia Fibers. J. Am Cer. Soc. 70(8):C-187–188, 1987.

187.J. Lankford. Plastic Deformation of Partially Stabilized Zirconia. J. Am. Cer. Soc. 66 (11):C-212–213. 1983.

188.J. Lankford. Deformation and Fracture of Yttria-Stabilized Zirconia Single Crystals. J. Mat. Sci. 21:1981–1989, 1986.

189.D. B. Marshall, M. C. Shaw, R. H. Dauskardt, R. O. Ritchie, M. J. Readey, and A.

H.Heuer. Crack-Tip Transformation Zones in Toughened Zirconia. J. Am. Cer. Soc. 73(9):2659–2666, 1990.

190.P. F. Becher, M. V. Swain, and M. K. Ferber. Relation and Transformation Temperature to the Fracture Toughness of Transformation-Toughened Ceramics. J. Mat. Sci. 22:76–84, 1987.

238

Chapter 3

191.A. G. Evans. Toughening Mechanisms in Zirconia Alloys. In: Fracture in Ceramic Materials. Noyes, 1984, pp. 16–55.

192.A. H. Heuer. Transformation Toughening in ZrO2-Containing Ceramics. J. Am. Cer. Soc. 70(10):689–698, 1987.

193.A. G. Evans. Perspective on the Development of High-Toughness Ceramics. J. Am. Cer. Soc. 73(2): 187–206, 1990.

194.P. F. Becher, K. B. Alexander, A. Bleier, S. B. Waters, and W. H. Warwick. Influ-

ence of ZrO2 Grain Size and Content on the Transformation Response in the Al2O3-ZrO2 (12 mol% CeO2) System. J. Am. Cer. Soc. 76(3):657–663, 1993.

195.A. V. Virkar and R. S. Gordon. Fracture Properties of Polycrystalline Lithia-Stabi- lized β″-Alumina. J. Am. Cer. Soc. 60(1–2):58–61, 1977.

196.W. J. McDonough, D. R. Flinn, K. H. Stern, and R. W. Rice. Hot Pressing and Physical Properties of Na Beta Alumina. J. Mat. Sci. 13:2403–2412, 1978.

197.G. J. May, S. R. Tan, and I. W. Jones. Hot Isostatic Pressing of Beta-Alumina. J. Mat. Sci. 15:2311–2316, 1980.

198.R. Stevens, Strength and Fracture Mechanisms in Beta-Alumina. J. Mat. Sci. 9:934–940, 1974.

199.J. N. Lingscheit, G. J. Tennenhouse, and T. J. Whalen. Compositions and Properties of Conductive Ceramics for the Na-S Battery. Am. Cer. Soc. Bull. 58(5):536–538, 1979.

200.T. L. Francis, F. E. Phelps, and G. MacZura. Sintered Sodium Beta Alumina Ceramics. Am. Cer. Soc. Bull. 50(7):615–619, 1971.

201.C.-Y. Chu, K. Bar, J. P. Singh, K. C. Goretta, M. C. Billone, R. B. Poeppel, and J.

L.Routbort. Mechanical Properties of Polycrystalline Lithium Orthosilicate. J. Am. Cer. Soc. 72(9):1643–1648, 1989.

202.J. A. Kuszyk and R. C. Bradt. Influence of Grain size on Effects of Thermal Expansion Anisotropy in MgTi2O5. J. Am. Cer. Soc. 56(8):420–423, 1973.

203.J. J. Cleveland and R. C. Bradt. Grain Size/Microcrack Relations for Pseudobrookite Oxides. J. Am. Cer. Soc. 61(11–12):478–481, 1978.

204.W. D. Scott. Purification, Growth of Single Crystals, and Selected Properties of MgF2. J. Am. Cer. Soc. 45(12):586–587, 1962.

205.W.-Y. Lin, M.-H. Hon, and S.-J. Yang. Effects of Grain Growth on Hot-Pressed Optical Magnesium Fluoride Ceramics. J. Am. Cer. Soc. 71(3):C-136–137, 1988.

206.H. H. Rice and M. J. Garey. Sintering of Magnesium Fluoride. Am. Cer. Soc. Bul. 46(12):1149–1153, 1967.

207.D. A. Buckner, H. C. Hafner, and N. J. Kriedl. Hot-Pressing Magnesium Fluoride.

J.Am. Cer. Soc. 45(9): 435–438, 1962.

208.V. Mandorf and J. Hartwig. High Temperature Properties of Titanium Diboride. High Temperature Materials Il (G. Ault, W. Barclay, and H. Munger, eds.). Interscience, New York, 1963, pp. 455–467.

209.R. A. Alliegro. Titanium Diboride and Zirconium Diboride Electrodes. Encyclopedia of Electrochemistry (C. Hampell, ed.). Reinhold, New York, 1964, p. 1125.

210.R. D. Holliday, R. Mogstad, and J. L. Henry. Gas Evolution During Consolidation

of Carbothermic TiB2 Powder to High Density. Electrochem. Tech. 1(5–6):183, 1963.

211.H. R. Baumgartner and R. A. Steiger. Sintering and Properties of Titanium Di-

Grain Dependence of Ceramic Tensile Strengths at 22°C

239

boride Made from Powder Synthesized in a Plasma-Arc Heater. J. Am. Cer. Soc. 67(3):207–212, 1984.

212.P. F. Becher, C. B. Finch, and M. K. Ferber. Effect of Residual Nickel Content on

the Grain Size Dependent Mechanical Properties of TiB2. J. Mat. Sci. Lett 5:195–197, 1986.

213.R. Telle and G. Petzow. Strengthening and Toughening of Boride and Carbide Hard Material Composites. Mats. Sci. Eng. A 105/106:97–104, 1988.

214.T. Watanabe and S. Kouno. Mechanical Properties of TiB2-CoB-Metall Boride Alloys. Am. Cer. Soc. Bul. 61(9):970–973, 1982.

215.M. K. Ferber, P. F. Becher, and C. B. Finch. Effect of Microstructure on the Properties of TiB2. J. Am. Cer. Soc. 74(1):C-2–4, 1983.

216.H. Itoh, S. Naka, T. Matsudaira, and H. Hamamoto. Preparation of TiB2 Sintered Compacts by Hot Pressing. J. Mat. Sci. 25:533–536, 1990.

217.E. S. Kang, C. W. Jang, C. H. Lee, and C. H. Kim. Effect of Iron and Boron Carbide on the Densification and Mechanical Properties of Titanium Diboride Ceramics. J. Am. Cer. Soc. 72(10):1868–1872, 1989.

218.J. Matsushita, H. Nagashima, and H. Saito. Preparation and Mechanical Properties of TiB2 Composites Containing Ni and C. J. Cer. Soc. Jpn., Intl. Ed. 99:1047-, 1991.

219.A. D. Osipov, I. T. Ostapenko, V. V. Tarosov, R. V. Tarasov, V. P. Podtykan, and N. F. Kartsev. Effect of Porosity and Grain Size on the Mechanical Properties of HotPressed Boron Carbide. Porosh. Met. 1:63–67, 1982.

220.G. deWith. High Temperature Fracture of Boron Carbide: Experiments and Simple Theoretical Models. J. Mat. Sci. 19:457–466, 1984.

221.B. Champagne and R. Angers. Mechanical Properties of Hot-Pressed B-B4C Materials. J. Am. Cer. Soc. 62:149–153, 1979.

222.M. Beauvy. Propriétés Mécaniques du Carbure de Bore <<Fritte>>. Rev. Int. Hautes Tempér Refract. 19: 301–310, 1982.

223.C. C. Seaton and S. K. Dutta. Effect of Grain Size on Crack Propagation in Thermally Shocked B4C. J. Am. Cer. Soc. 57(5):228–229, 1974.

224.T. Vasilos and S. K. Dutta. Low Temperature Hot Pressing of Boron Carbide and Its Properties. Am. Cer. Soc. Bull. 53(5):453–454, 1974.

225.N. D. Rybal chenko, A. G. Mironova, V. P. Podtykan, I. T. Ostapenko, A. D. Osipov, and R. V. Tarasov. Effect of Conditions of Hot Pressing on the Structure and Mechanical Properties of Boron Carbide. Poroshkovaga Metallurgiya 8(248):39–43, 1983.

226.M. Bougoin, F. Thevenot, J. Dubois, and G. Fantozzi. Synthèse et Caractérisation de Céramiques Denses en Carbure de Bore. J. Less Com. Met. 114:257–271, 1985.

227.K. A. Schwetz, and W. Grellner. The Influence of Carbon on the Microstructure and Mechanical Properties of Sintered Boron Carbide. J. Less-Com. Met. 82:37–47, 1981.

228.K. A. Schwetz, W. Grellner, and A. Lipp. Mechanical Properties of HIP Treated Sintered Boron Carbide. Inst. Phys. Conf. Ser. No. 75, 1986, pp. 413–426.

229.J. Dubois, G. Fantozzi, M. Bougoin, and F. Thevenot. Microstructure et Propriétés

Mécaniques de Materiaux Céramiques de Type BxC/SiC, Frittes sans Charge. J. Phys. 2:C1-75, 1986.