Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
С.Н. Гринфельд Физические основы электроники уч. пособие.doc
Скачиваний:
233
Добавлен:
24.11.2014
Размер:
4.05 Mб
Скачать

6.2. Искажения в усилителях

Основным качественным показателем усилителя является точность воспроизведения формы усиливаемого сигнала. В идеальном усилителе форма сигнала на выходе должна точно повторять форму входного сигнала. Отклонение формы выходного сигнала от формы сигнала, подаваемого на его вход, называется искажением. В усилителях различают два вида искажений – линейные и нелинейные. Оба вида искажений изменяют форму входного сигнала, но причины их появления различны.

Линейные искаженияобусловлены зависимостью модуля коэф­фициента усиления напряжения или тока, а также фазового сдвига между входными и выходными величинами от часто­ты входного сигнала. Линейные искажения можно разделить на частотные и фазовые.

Форма сложного сигнала на выходе усилителя, работаю­щего в линейном режиме, будет отличаться от входной в том случае, если гармонические составляющие входного сигнала будут усиливаться в усилителе неодинаково, а также, если вносимые усилителем фазовые сдвиги будут различными для отдельных гармонических составляющих. Вызываемые ука­занными причинами изменения формы выходного сигнала на­зывают соответственно частотными и фазовыми искажениями.

Частотные искажения– это искажения, обусловленные изменением значения коэффициента усиления на различных частотах. Идеальная АЧХ должна иметь одинаковый коэффициент усиления во всем диапазоне рабочих частот. Реальная же характеристика имеет «завалы» на частотах, близких к границам диапазона рабочих частот. Снижение коэффициента усиления на низших частотах объясняется возрастанием емкостного сопротивления разделительных конденсаторов

хC= 1 /C

по мере снижения частоты сигнала.

Снижение KU на высших частотах объясняется влиянием паразитных емкостей «коллектор – база», «коллектор – эмиттер» и «база – эмиттер», а также паразитных емкостей, которые возникают при монтаже. Эти емкости на высоких частотах приводят к закорачиванию транзисторов и снижению усиления сигнала.

Для количественной оценки частотных искажений используют коэффициент частотных искажений(M), равный отношению коэффициента усиления на средних частотах (Kср) к коэффициенту усиления на данной частоте (K):

M=Kср/K.

Поскольку наибольшие частотные искажения имеются на границах рабочего диапазона, то при расчете усилителя задают коэффициенты частотных искажений на низшей и высшей частотах, т.е.

Mн =Kср/Kн иMв=Kср/Kв.

Частотные искажения в усилителе всегда сопровождаются появлением фазовых искажений. При усилении синусоидального сигнала с неизменной час­тотой линейные искажения не играет большой роли: на одной определенной частоте всегда можно добиться доста­точного усиления, а фазовые сдвиги скомпенсировать. Проб­лема линейных искажений возникает тогда, когда сигнал имеет сложную форму. Для такого сигнала фазочастотные искажения не менее, а часто более существен­ны, чем амплитудно-частотные.

Фазовые искажения не влияют на спектральный состав и соотношение амплитуд гармонических составляющих сложного сигнала, а вызывают изменение его формы в результате различных фазовых сдвигов, возникающих у отдельных составляющих сигнала после прохождения через усилитель.

Влияние фазовых искажений на форму сигнала, состоящего из двух гармоник, упрощенно поясняется на рис. 6.7, а и б. Построение проведено при условии, что коэффициент усиления не зависит от частоты, но для второй гармоники усилитель вносит сдвиг фаз на угол φ = π/4. Из графика (рис. 6.7, б) видно, что форма выходного сигнала очень сильно отличается от формы входного, следовательно, большие фазовые искажения не менее существенно, чем частотные, влияют на качество работы усилителя.

Фазочастотные искажения от­сутствуют при отсутствии относительного сдвига гармоник. Для этого должно соблюдаться условие:

n =n1.

Это условие выполняется, если фазочастотная характеристика линейна (рис. 6.7, в):

 = a

Вотличие от линейных искажений,нелинейные искаженияв усилителях обусловлены наличием нелинейных элемен­тов, в первую очередь, транзисторов, а также других элементов с нелинейными ВАХ. Нелинейные искажения связаны только с амплитудой входного сигнала и не связаны с его частотой.

При входном сигнале синусоидальной формы нелинейные искажения проявляются в том, что выходной сигнал не явля­ется синусоидальным. При разложении в ряд он оказывается состоящим из основной гармоники, имеющей частоту вход­ного сигнала, и ряда высших гармоник. Величина нелинейных искажений в случае синусоидального сигнала оценивается коэффициентом нелинейных искажений

При наличии нелинейных искажений напряжение или ток первой гармоники является полезным усиленным сиг­налом. Все высшие гармоники, начиная со второй, являются следствием нелинейных искажений. Уровень нелинейных искажений пропорционален мощности высших гармоник, и при усилении синусоидального сигнала оценивается коэффициентом нелинейных искажений (клирфактором):

,

где n– номер гармоники.

При оценке нелинейных искажений в большинстве случаев учитывают только вторую и третью гармоники, так как более высокие гармоники выходного сигнала обычно имеют малую мощность. B многокаскадных усилителях (когда каскады вносят примерно одинаковые нелинейные искажения) общий коэффициент нелинейных искажений принимается равным сумме коэффициентов нелинейных искажений каждого каскада:

Kг≈Kг1+Kг2 + … +Kгn

B общем случае нелинейные искажения отдельных кас­кадов могут частично компенсировать друг друга вслед­ствие сдвига колебаний по фазе. Реальные усиливаемые сигналы в большинстве случаев отличаются от синусоидаль­ных. При их усилении возникают новые гармоники и гар­моники комбинационных частот, поэтому величина Kг не дает полной оценки уровня нелинейных искажений сигнала со сложным спектральным составом.

B многокас­кадных усилителях наибольшие нелинейные искажения обычно возникают в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

При отсутствии линейных искажений (т.е. реактивных элементов в схеме усилителя) соотношение основной и выс­ших гармоник на выходе не зависит от частоты входного сиг­нала, а зависит только от его амплитуды; характерно также отсутствие какого бы то ни было сдвига фаз между входным и выходным сигналами.

Сигнал сложной формы, очевидно, сам состоит из ряда гармоник. Поэтому его нелинейные искажения проявляются либо в возникновении дополнительных гармоник, либо (в слу­чае бесконечного ряда гармоник на входе) – в изменении «спектрального состава гармоник», т.е. соотношения их ам­плитуд.

Следует отметить, что между линейными и нелинейными искажениями существует связь, несмотря на их различное происхождение. Пусть, например, в каком-либо промежуточ­ном каскаде усилителя получились нелинейные искажения, т.е. появились высшие гармоники. Эти гармоники могут быть либо дополнительно подчеркнуты, либо частично подавлены, в зависимости от вида частотных характеристик последую­щих каскадов.

Полное отсутствие нелинейных искажений принципиально невозможно, потому что в усилителях используются такие управляющие элементы, как биполярные или полевые тран­зисторы. На рис.6.8 приведен пример возникновения нелинейных искажений, обусловленные нелинейностью ВАХ биполярного транзистора. Из графиков видно, что при подаче на базу транзистора напряжения синусоидальной формы входной ток базы будет отличаться от синусоиды.