Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Бенито муссолини

.docx
Скачиваний:
14
Добавлен:
11.02.2015
Размер:
415.73 Кб
Скачать

1.генетика как наука.предмет .методы.задачи.этапы развития.

Генетика - наука об основных закономерностях наследственности и изменчивости. Наследственность - это свойство живых организмов приобретать в процессе онтогенеза признаки сходные с родительскими организмами и передавать из поколения в поколение. Изменчивость – свойство живых организмов приобретать в процессе онтогенеза некоторые отличия признаков от родительских организмов. Предмет - изучение материальных основ наследственности (генов) на молекулярногенетическом,субклеточном, клеточном, организменном и популяционно-видовом уровнях организации живого. Задачи: изучение способов хранения генетической информации (у вирусов, бактерий, растений, животных и человека); анализ способов передачи наследственной информации от одного поколения клеток и организмов к другому; выявление механизмов и закономерностей реализации генетической информации в процессе онтогенеза и влияние на них условий среды обитания; 4) изучение закономерностей и механизмов изменчивости и ее роли в приспособлении организмов и эволюционном процессе; 5) изыскание способов исправления поврежденной генетической информации. Методы гибридологического анализа (разработан Г. Менделем на самоопыляемом растении – горохе).. Цитогенетический метод - изучение кариотипа (набор хромосом) клеток при помощи микроскопической техники и выявлять геномные (изменение числа хромосом) и хромосомные (изменение структуры хромосом) мутации. Генеалогический метод - изучение родословных. Генеалогическим методом доказано наследование многих заболеваний (гемофилии, дальтонизма, брахидактилии и др.).. Близнецовый метод - изучение наследования признаков у близнецов .позволяет выявить роль наследственности и внешней среды в формировании признаков. Биохимические методы основаны на исследовании биологических жидкостей (крови, мочи, амниотической жидкости) для изучения активности ферментов и химического состава клеток, который определяется наследственностью. Методы выявляют генные мутации и гетерозиготное носительство рецессивных генов. Популяционно-статистический метод позволяет рассчитать частоту встречаемости генов и генотипов в популяциях. Методы моделирования: Математическое (создание математических моделей наследственных заболеваний) Биологическое - На животных создают модели наследственных болезней, разрабатывают методы диагностики, лечения и затем полученные данные применяются к человеку. Дерматоглифический метод ( греч. derma – кожа, gliphe – рисовать) – это изучение рельефа кожи на пальцах, ладонях и подошвах стоп.. Методы рекомбинантной ДНК позволяют анализировать фрагменты ДНК, находить и изолировать отдельные гены и их сегменты и устанавливать в них последовательность нуклеотидов. Метод используется для выявление генных мутаций.

В развитии генетики можно выделить 3 этапа: 1. (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). 2. (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики. 3. (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана). Большой вклад в развитие генетики внесли отечественные учёные. Получили искусственным путём мутации – Филиппов. Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков – основатель учения о генетике популяций. Серебровский – показал сложное строение и дробимость гена.

3.основн.генетич.понятия.моногибр.скрещ.гипотеза чистоты гамет.условия,обеспеч.проявл-я законов расщепления.

Моногибридное скрещивание, при котором родительские формы анализируются по одному альтернативному признаку.по двум альтернативным признакам, называется дигибридным, если более двух признаков - полигибридным. Потомство от скрещивания двух особей с различной наследственностью называется гибридным, а отдельная особь гибрид. Альтернативный признак – качественный признак, имеющий несколько качеств или состояний, например, цвет семян гороха (желтый и зеленый). Доминантный - альтернативный признак, проявляющийся в гомозиготном и в гетерозиготном состоянии, его детерминирует доминантный ген, который обозначается заглавной буквой. Рецессивный - альтернативный признак, проявляющийся только в гомозиготном состоянии и «подавленный» в гетерозиготном. Его детерминирует рецессивный ген, который обозначается строчной буквой. Ген может быть представлен двумя качественными состояниями: доминантным и рецессивным. Качественные состояния гена называются аллелями. Аллельные - гены, которые располагаются в одинаковых локусах гомологичных (парных) хромосом и отвечают за 1 признак. Аллельные гены обозначают одинаковыми буквами: доминантный - заглавной буквой (А), а рецессивный - строчной (а). Неаллельные - гены, располагающиеся в разных локусах гомологичных хромосом или в разных хромосомах и определяющие развитие разных признаков. Генотип – это совокупность генов, полученных организмом от родителей. Фенотип - это совокупность внешних и внутренних признаков организма, которые развиваются на основе генотипа в определенных условиях среды. Отдельный признак называется феном (цвет глаз, волос). Гомозиготным по данному признаку называется организм, у которого в одинаковых локусах гомологичных хромосомах находятся одинаковые аллельные гены (доминантные - АА или е рецессивные - аа Гетерозиготным по данному признаку называется организм, у которого в одинаковых локусах гомологичных хромосомах находятся разные гены одной аллельной пары (Аа). МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ. Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре признаков (например, гладкие или морщинистые семена). Рассмотрим схему моногибридного скрещивания.

Из схемы видно, что родительские формы образуют одинаковые гаметы, в каждую из которых отходит по одному гену из аллельной пары. Пара аллелей (А и а) соответствует двум контрастным состояниям гена и локализована в идентичных локусах гомологичных хромосом. При слиянии родительских гамет формируется генотип гибридов первого поколения (Аа). Все гибриды первого поколения (F1) выглядят одинаково, т.е. имеют одинаковый фенотип, сходный с фенотипом одного из родителей. Эта закономерность иллюстрирует первый закон Менделя – закон единообразия гибридов первого поколения, а также правило доминирования.ЗАКОН ЧИСТОТЫ ГАМЕТ. Для объяснения закономерностей проявления и расщепления признаков у гибридов F2 Мендель предложил гипотезу чистоты гамет, согласно которой доминантный и рецессивный аллели в гетерозиготном генотипе F1 (Аа) не смешиваются, а образуют два типа гамет в равном соотношении: ½ А и ½ а.

В случае полного доминирования один аллель (А) полностью подавляет действие другого (а).

2.классики генетики.вклад бел.ученых в развитие генетики.

Первые идеи о механизмах наследственности высказывали древние греки уже к V веку до н.э., в первую очередь Гиппократ. По его мнению, половые задатки), участвующие в оплодотворении, формируются при участии всех частей организма, в результате чего признаки родителей непосредственно передаются потомкам, причем здоровые органы поставляют здоровый репродуктивный материал, а нездоровые – нездоровый. Это теория прямого наследования признаков. Аристотель (IV в до н.э.) полагал, что половые задатки, участвующие в оплодотворении, производятся не напрямую из соответствующих органов, а из питательных веществ, необходимых для этих органов. Это теория непрямого наследования. Много лет спустя, на рубеже 18-19 веков, автор теории эволюции Ж.-Б. Ламарк использовал представления Гиппократа для построения своей теории передачи потомству новых признаков, приобретенных в течение жизни. Теория пангенезиса, выдвинутая Ч. Дарвином в 1868 году также базируется на идее Гиппократа. По мнению Дарвина, от всех клетокорганизма отделяются мельчайшие частицы - "геммулы", которые,циркулируя с током крови по сосудистой системе организма, достигают половыхклеток. Затем, после слияния этих клеток, в ходе развития организма следующегопоколения геммулы превращаются в клетки того типа, из которого произошли,со всеми особенностями, приобретенными в течение жизни родителей. В 1871 году английский врач Ф. Гальтон (F. Galton), двоюродный брат Ч. Дарвина опроверг своего великого родственника. Он переливал кровь черных кроликов белым, а затем скрещивал белых между собой. В трех поколениях он "не нашел ни малейшего следа какого-либо нарушения чистоты серебристо белой породы". В 80-е годы 19-го века с теорией пангенезиса не согласился Август Вейсман Он предложил свою гипотезу, согласно которой в организме существуют два типа клеток: соматические и особая наследственная субстанция, названная им "зародышевой плазмой", которая в полном объеме присутствует только в половых клетках. Историю генетики условно делят на три этапа. Первый этап классической генетики (1880 – 1930гг.), связанный с созданием теории дискретной наследственности (менделизм) и хромосомной теории наследственности (работы Моргана и его школы). Второй этап (1930 – 1953 гг.) – углубление принципов классической генетики и пересмотр ряда ее положений, исследования по мутационной изменчивости, доказательства сложного строения гена и генетической роли молекул дезоксирибонуклеиновой кислоты (ДНК) как материальной основы наследственности в клетке. Третий этап начинается с 1953 г., когда было описано строение ДНК и ее свойства, начаты и продолжаются работы по выделению ДНК и РНК и расшифровка генетического кода. В последние годы активно исследуются молекулярные основы строения и функционирования геномов, устанавливаются полные нуклеотидные последовательности геномов ряда организмов, в том числе человека, ведутся интенсивные исследования в области генетической инженерии. Подходы к современной генетике наметились в 18-ом и, особенно, в 19-ом веке. Растениеводы-практики, такие как О. Сажрэ и Ш. Нодэн во Франции, А. Гершнер в Германии, Т. Найт в Англии обратили внимание на то, что в потомстве гибридов преобладают признаки одного из родителей. П. Люка во Франции сделал аналогичные наблюдения о наследовании различных признаков у человека. Фактически всех их можно считать непосредственными предшественниками Менделя. Однако, только Мендель сумел глубоко продумать и провести спланированные эксперименты. Таким образом, заслугой Менделя является то, что из непрерывной характеристики растений он выделил дискрентные признаки, выявил константность и контрастность их проявления, а также он ввел понятие доминантности и рецессивности. Работа Менделя не смогла заинтересовать современников и не повлияла на распространенные в конце 19-го века представления о наследственности. Вторичное открытие законов Менделя в 1900 году Гуго де Фризом (Н. de Vries) в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии утвердили представления о существования дискретных наследственных факторов. Проверяли справедливость законов о наследовании по Менделю (менделировании) на все новых и новых растениях и животных и получали неизменные подтверждения. Все исключения из правил быстро развивались в новые явления общей теории наследственности. В 1906 году англичанин Уильям Бэтсон (W. Bateson) предложил термин "генетика" (от латинского "geneticos" – относящийся к происхождению или "geneo" - порождаю, или "genos" – род, рождение, происхождение). В 1909 году датчанин Вильгельм Иогансен (W. Iohanssen) предложил термины "ген", "генотип" и "фенотип". Но уже вскоре после 1900 года встал вопрос, что такое ген и где он в клетке расположен? Еще в конце 19-го века Август Вейсман предположил, что постулированная им "зародышевая плазма" должна составлять материал хромосом. В 1903 году немецкий биолог Теодор Бовери (Т. Boveri) и студент Колумбийского Университета Уильям Сэттон, независимо друг от друга предположили, что общеизвестное поведение хромосом во время созревания половых клеток, а также при оплодотворении, позволяет объяснить характер расщепления наследственных единиц, постулированный теорией Менделя, т.е. по их мнению гены должны быть в хромосомах. В 1906 году английские генетики У Бэтсон и Р. Пэннет в опытах с душистым горошком обнаружили явление сцепления наследственных признаков, а другой английский генетик Л. Донкастер тоже в 1906 году в опытах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. С 1910 года начинаются эксперименты группы Томаса Ханта Моргана (Т.Н. Morgan). Вместе со своими учениками Альфредом Стертевантом (A. Sturtevant), Кальвином Бриджесом (С. Bridges) и Германом Меллером (Н. Muller), ставшими вместе с Морганом основоположниками генетики, он к середине 20-х годов сформулировал хромосомную теорию наследственности, согласно которой гены расположены в хромосомах "как бусы на нити". Ими был определен порядок расположения и даже расстояния между генами. Именно Морган ввел в генетические исследования в качестве объекта маленькую плодовую мушку дрозофилу (Drosophila melanogaster). В 1929 году А.С. Серебровский и Н.П. Дубинин, еще не зная, что такое ген, на основании результатов собственных исследований пришли к выводу о его делимости. Новый этап развития генетики начался в 1930-1940-е годы: Дж. Бидл (J. Beadle) и Э. Тэйтум (Е. Tatum) сделали заключение о том, что всякий ген определяет синтез одного фермента. Они предложили формулу: "Один ген – один фермент", или позднее, после уточнения: "один ген – один белок", или "один ген – один полипептид". В 1944 году в результате работ по трансформации у бактерий О. Эвери, К. МакЛеод и М. МакКарти (О.Т. Avery, СМ. MacLeod, M. McCarty) показали что трансформирующим агентом у пневмококков является ДНК, а следовательно, именно этот компонент хромосом и является носителем наследственной информации. Примерно в это же время было показано, что инфекционным элементом вирусов служит их нуклеиновая кислота. В 1952 году – Дж. Ледерберг и М. Зиндер (J. Lederberg, M. Zinder) открыли явление трансдукции, т.е. переноса вирусами генов хозяина, показав тем самым роль ДНК в осуществлении наследственности. Новый этап развития генетики начинается с момента расшифровки структуры ДНК Джеймсом Уотсоном и (J.D. Watson, род. 1928, F. Crick, род. 1916), которые обобщили данные рентгеноструктурного анализа, полученные Моррисом Уилкинсом и Розалинд Франклин. Этот этап развития генетики богат выдающимися открытиями, особенно крупное было связано с расшифровкой генетического кода (С. Очоа и М. Ниренберг в США, Ф. Крик в Англии). А в 1969 году в США Г. Хорана с сотрудниками синтезировали химическим путем первый ген. Достаточность знаний о механизмах наследственности привела к развитию новой науки – генетической инженерии. В 1976 году была выделена и клонирована ДНК мобильных элементов генома (Г.П. Георгиев с сотрудникми в СССР, Д. Хогнесс (D. Hogness) с сотрудниками в США). С 1982 года, используя мобильные элементы генома в качестве вектора, содержащего тот или иной ген, начаты опыты по трансформации дрозофилы (Дж. Рубин, А. Спрадлинг, США). Конец 1980-х - 1990-е годы характерны беспрецедентной активностью генетиков по расшифровке процессов развития, осуществляемого под контролем генов Вклад белорусских ученых в развитие генетики Генетика в Белоруссии была тесно связана в основном с решением практических задач селекции и семеноводства сельскохозяйственных культур. Начало генетических исследований определили работы академика АН БССР Антона Романовича Жебрака в области отдаленной гибридизации пшениц и экспериментальной полиплоидии (30-е годы, Москва, начало и 1953—1965 гг., Академии наук Белорусской ССР ). Учеными известных далеко за пределами Беларуси Республиканских научно-производственных дочерних унитарных предприятий «Институт плодоводства», «Институт овощеводства» и «Институт картофелеводства» (п. Самохваловичи Минского района) с 1925 года выведено более 50 сортов картофеля, 70 овощных, 124 плодовых и 30 сортов ягодных культур. Под руководством и при непосредсвенном участии академика П.И. Альсмика выведены такие прекрасные сорта картофеля как Темп, Лошицкий, Разваристый, Академический, Огонек, Ласунок и другие. В последние годы в республике районировано 12 сортов картофеля с потенциальной урожайностью 500-700 ц/га, устойчивых к болезням и вредителям, с высокими дегустационными качествами, пригодных для переработки на пищевые полуфабрикаты. А.Г.Волузнев вывел 23 сорта ягодных культур. Наиболее распространенные сорта черной смородины – Белорусская сладкая, Кантата, Минай Шмырев, Памяти вавилова, Церера, Катюша, Купалинка; красной смородины – Ненаглядная; крыжовника – Яровой, Щедрый; земляники – Минская, Чайка. В «Институте плодоводства» выведено 24 сорта яблони (Антей, Белорусское малиновое, Банановое и другие), 8 сортов груши (Белоруска, Маслянистая, Лошицкая и другие),15 сортов черешни (Золотая Лошицкая, Красавица) и многие другие. Родоночальником белорусской селекции плодовых культур являются Э.П. Сюбарова и А.Е. Сюбаров. Продолжили начатое ими дело селекционеры по яблоне – Г.К.Коваленко, Е.В.Семашко, по груше – Н.И.Михневич, по вишне – Р.М.Сулимова, по сливе – В.А.Матвеев. Основоположниками селекции овощных культур являются: Г.И.Артеменко и А.М.Полянская (томаты), Е.И.Чулкова (капуста), В.Ф.Девятова (лук, чеснок). Они заложили и развили основы научной селекции овощных культур в Беларуси. В последнее десятилетие районированы сорта овощных культур белорусской селекции: томаты открытого грунта – Перамога, Превосходный, Доходный, Ружа, Неман; томаты для пленочных теплиц – Вежа; огурцы – Должик, Верасень, Зарница; капуста – Русиновка, Юбилейная; лук – Янтарный, ветразь; чеснок – Полет и другие. Кроме того, белорусскими селекционерами выведено и районировано множество сортов зерновых и зернобобовых, технических и кормовых растений. В Белорусском научно-исследовательском институте земледелия и кормопроизводства (г.Жодино) Н.Д.Мухиным выведен и впервые внедрен в производство тетроплоидный сорт озимой ржи Белта. Он автор и соавтор сортов озимой ржи Белорусская 23, Дружба, яровой пшеницы Минская, гречихи Искра и Юбилейная 2 и другие. Высокими необходимыми качествами обладают сорта озимой пшеницы Березина, Надзея; сорта ярового ячменя Зазерский 85 и Жодинский 5; сорт люпина желтого Нарочанский. Наиболее известные сорта сахарной свеклы Белорусская односемянная, Гибрид ганусовский-8, Ганусовская односемянная-55, полигибрид Белорусский-31.

4.дигибридн.скрещивание.полигибридн.скрещиван

законы Менделя. СУТЬ И ЗНАЧЕНИЕ РАБОТ Г.МЕНДЕЛЯ.

закон единообразия гибридов первого поколения

Чтобы убедиться в константности признаков, Мендель два года предварительно проверял различные формы гороха. Признаки должны иметь контрастные проявления. Мендель выделил у гороха 7 признаков, каждый из которых имел по два контрастных проявления, например, зрелые семена по форме были либо гладкими либо морщинистыми, по окраске желтыми или зелеными, окраска цветка была белой или пурпурной.

После определения признаков можно приступать к скрещиваниям. В скрещиваниях используют генетические линии - родственные организмы, воспроизводящие в ряду поколений одни и те же наследственно константные признаки.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре признаков (например, гладкие или морщинистые семена). Рассмотрим схему моногибридного скрещивания.

Из схемы видно, что родительские формы образуют одинаковые гаметы, в каждую из которых отходит по одному гену из аллельной пары. Пара аллелей (А и а) соответствует двум контрастным состояниям гена и локализована в идентичных локусах гомологичных хромосом. При слиянии родительских гамет формируется генотип гибридов первого поколения (Аа). Все гибриды первого поколения (F1) выглядят одинаково, т.е. имеют одинаковый фенотип, сходный с фенотипом одного из родителей. Эта закономерность иллюстрирует первый закон Менделя – закон единообразия гибридов первого поколения, а также правило доминирования. Второй закон Менделя

Мендель скрестил полученные гибриды между собой. Как он сам пишет: "в этом поколении наряду с доминирующими признаками вновь появляются также рецессивные в их полном развитии и притом в ясно выраженном среднем отношении 3:1, так что из каждых четырех растений этого поколения три получают доминирующий и одно - рецессивный признак" (Мендель, 1923,). Всего в данном опыте было получено 7324 семян, из которых гладких было 5474, а морщинистых 1850, откуда выводится отношение 2,96:1.

При самоопылении гибридов F1 во втором поколении наблюдается расщепление по фенотипу в соотношении 3 : 1 (¾ гладких и ¼ морщинистых семян). Это соотношение выражает во второй закон Менделя – закон расщепления признаков. В рассматриваемом примере признаки наследуются независимо и распределе-ние генов связано с независимым расхождением двух пар гомологичных хромосом в мейозе.

Дигетерозиготные растения F1 образуют 22 = 4 типов гамет.

При сочетании гамет при дигибридном скрещивании получается 42 = 16 комбинаций.

В F2 по каждому признаку наследование происходит независимо от другого признака - третий закон Менделя - закон независимого комбинирования признаков.

Расщепление по каждой паре признаков в отдельности происходит так же, как и при моногибридном скрещивании в отношении 3 : 1.

По фенотипу в F2 расщепление происходит на 22 = 4 класса в соотношении:

(3А -: 1аа) х (3В - : 1вв) =

9А - В - : 3А - вв : 3 ааВ - : 1 аавв

жёлтых жёлтых зелёных зелёных

гладких морщин. гладких морщин.

По генотипу в F2 расщепление происходит на 32 = 9 классов в соотношении:

(1АА : 2Аа : 1аа) х (1ВВ : 2Вв : 1вв) =

1ААВВ : 2ААВв : 1ААвв : 2АаВВ : 4АаВв : 2Аавв : 1ааВВ : 2ааВв : 1аавв.

Т. о., коэффициент гомозиготного генотипа - 1 (ААВВ, ААвв, ааВВ, аавв), гетерозиготного генотипа по одному гену - 2 (ААВв, АаВВ, Аавв, ааВв), гетерозиготного генотипа по двум генам - 4 (АаВв).

Анализ полигибридных скрещиваний производится также, как и дигибридных, однако с каждым увеличением числа признаков возрастает число комбинаций гамет.

Если у дигибрида, как мы видели, получается 16 комбинаций, у тригибрида их уже 64, а у тетрагибрида - 256. Классическое расщепление 9:3:3:1 в дигибридном скрещивании получается не всегда, для этого необходимо соблюдение многих условий.

Следует иметь ввиду, что в полигибридных расщеплениях также может быть неполное доминирование, приводящее к серьезным изменениям в частотах встречаемости разных фенотипических классов.

После того, как Мендель скрестил формы гороха, различающиеся по 7 признакам, у гибридов проявился, или доминировал, только один из пары родительских признаков. Рецессивный признак у гибридов первого поколения не проявлялся. Позднее это явление доминирования было названо первым законом Менделя или законом единнобразия гибридов первого поколения.

При анализе наследованных признаков для краткости удобно пользоваться так называемым фенотипическим радикалом. Например, генотипы АА и Аа будут иметь фенотипический радикал А_, который означает, что в данном генотипе может быть как доминантный (А), так и рецессивный (а) аллель. Для объяснения закономерностей проявления и расщепления признаков у гибридов F2 Мендель предложил гипотезу чистоты гамет, согласно которой доминантный и рецессивный аллели в гетерозиготном генотипе F1 (Аа) не смешиваются, а образуют два типа гамет в равном соотношении: ½ А и ½ а.

В случае полного доминирования один аллель (А) полностью подавляет действие другого (а).

Выводы, сделанные Менделем: 1.Признаки в потомстве гибридов не исчезают, а перекомб-ся и перед-ся след.поколениям; 2.В основе такого наследования – сочетания двух факторов (равновероятн.обр-ие гамет А и а, равновероятн.их встреча). 3.Гамета каждого из родителей несет по одному наследств.факторов.

Главное: установлена связь фенотип-наследств.фактор (не исчезающий, а перед-ся потомкам), предложен матем.подход к характеру наследования. АНАЛИЗ ДИГИБРИДНОГО СКРЕЩИВАНИЯ. ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ И ЕГО ЦИТОЛОГИЧЕСКИЕ ОСНОВЫ. Дигибриды – гибриды, полученные от скрещивания организмов, отличающихся одновременно двумя парами альтернативных признаков. [“Вопрос рассмотрим на примере работ Г.Менделя…”]. Для первого скрещивания исп-сь гомозиготы, отличающиеся по двум парам признаков (форма и окраска семян). В F1 – единообразие фенотипов – все гетерозиготы (для проверки гетерозиготности этих растений примен-ся анализирующее скрещивание - с дигомозиготой). Растения в F1 с равной вероятностью дают гаметы AB, Ab, aB и ab =>16 равновероятных генотипов =>расщепление 9:3:3:1 по фенотипу (имело место полное доминирование). Вывод: Признаки наследовались независимо. Цитолог.основа – случайность ориентации хромосом в метафазе II мейоза =>случайное сочетание негомологичных хромосом у полюсов клетки =>равная вероятность обр-ия АВ-, Ав-, аВ- и ав-гамет. Пропорции, наблюдавшиеся Менделем соблюд-ся при условии: гомозиготности исх.форм, альт.проявлениях признаков, одинаковой жизнеспособности гамет с разными генотипами, независимости проявления признака от внешн.условиях и генотип.окружения.

7.взаимод-ие неалельн.генов:комплимент.эпистаз.гены-

Модификаторы.

Неаллельные гены локализованы в разных парах гомологичных хромосом или в одной паре гомологичных хромосом, но в разных ее локусах. Выделяют три основных типа взаимодействия неаллельных генов. Комплементарность – тип неаллельного взаимодействия генов, при котором сочетание в генотипе доминантных аллелей обоих генов обуславливает появление нового признака. Впервые подобный тип взаимодействия был изучен У. Бетсоном и Р. Пеннетом у душистого горошка. При скрещивании двух линий с белыми цветками в F1 дигетерозиготные растения АаВв имели пурпурные цветки, а в F2 было получено 9/16 (A-B-) растений с пурпурными цветками, и 7/16 (3/16 A–bb+ 3/16 aaB– + 1/16 aabb) с белыми, т.е. расщепление составило: 9:7. Наследование окраски цветков у Lathyrus odoratus при взаимодействии двух пар генов Таким образом, взаимодействие доминантных генов А+В обусловливает пурпурную окраску цветков. При комплементарном взаимодействии генов возможны отклонения от стандартной формулы расщепления по фенотипу (9:3:3:1) при дигибридном скрещивании, а именно: 9:6:1 Вариант такого взаимодействия генов характерен для наследования формы плодов у тыквы. Наследование формы плода у Cucurbita pepo при взаимодействии двух пар генов У тыквы наблюдается три разновидности плодов: дисковидная, сферическая и удлиненная, причем сферическая форма является рецессивной по отношению к дисковидной. При скрещивании двух сортов тыквы со сферическими плодами получаются растения F1 с дисковидной формой плодов. В потомстве этих растений в F2 появляются три фенотипических класса в соотношении 9/16 с дисковидными плодами (А–В–), 6/16 – со сферическими (3/16 A–bb+3/16 aaB–) и 1/16 с удлиненными (aabb). Это свидетельствует о том, что каждый из доминантных неаллельных генов А и В детерминирует сходный фенотип – сферическую форму плодов, взаимодействие их доминантных аллелей в генотипе обусловливает дисковидную форму плодов, а взаимодействие рецессивных аллелей - удлиненную форму. 9:3:3:1 Подобное расщепление по фенотипу в F2 наблюдается при наследовании окраски глаз у дрозофилы. При скрещивании линий дрозофилы с ярко-красными и коричневыми глазами получены гибриды F1 с красными глазами. Наследование окраски глаз у Drosophila при взаимодействии двух пар генов В F2 присутствие доминантных генов А и В у 9/16 особей приводит к формированию красной окраски глаз. Присутствие гена А в гомо- или гетерозиготном состоянии при рецессивном b дает ярко-красную окраску у 3/16 особей, а гены aaB– у 3/16 потомства дают коричневую окраску. Гомозиготы по обоим рецессивным генам aabb (1/16) имеют новый фенотип – белую окраску глаз. Итак, взаимодействие доминантных генов в генотипе изменяет окраску глаз. Каждый из комплементарных доминантных генов имеет собственное фенотипическое проявление, а двойная рецессивная гомозигота отличается от них по фенотипу. 9:3:4 Вариант подобного взаимодействия комплементарных генов можно рассмотреть на примере наследования окраски луковицы. У лука скрещивание формы, имеющей неокрашенную (белую) луковицу, с формой, имеющей желтую луковицу, дает в F1 растения с красной луковицей. А в F2 появляются растения с красной (9/16), желтой (13/16) и белой (4/16) луковицами: P: ccRR × CCrr Белая Желтая Гаметы: cR Cr F1 CcRr Гаметы: CR, Cr, cR, cr F2 9/16 C–R– : 3/16 C–rr : 4/16 (3/16 ccR– + 1/16 ccrr) Красная Желтая Белая Красная окраска луковицы обусловлена наличием двух доминантных генов (С–R–). Доминантный аллель С детерминирует желтую окраску луковицы, а рецессивный аллель с – белую. Доминантный ген R не имеет собственного фенотипического проявления и объединяется по фенотипу с рецессивной гомозиготой гена с, аллель r не влияет на проявление окраски. Таким образом, комплементарными являются гены, которые при совместном действии в генотипе в гомо- и гетерозиготном состоянии (А–В–) обусловливают развитие нового признака. Действие каждого гена в отдельности (А–вв или ааВ–) воспроизводит признак лишь одного из скрещиваемых родителей. Расщепление в F2 по фенотипу может быть разнообразным: 9:7, 9:6:1, 9:3:3:1, 9:3:4. Эпистаз – тип неаллельного взаимодействия генов, при котором ген одной аллельной пары подавляет действие генов другой пары. Гены, подавляющие проявление других генов, называются супрессорами, а подавляемые гены – гипостатичными. Выделяют два типа эпистаза: доминантный и рецессивный. При доминантном эпистазе – супрессии ингибирующее действие оказывает доминантный аллель: А>B. 13 : 3 Окраска оперения кур определяется двумя генами, взаимодействующими по типу доминантного эпистаза. Ген С обусловливает окрашенное оперение, ген I подавляет проявление пигмента(I>C); ген с детерминирует белое оперение, ген i на окраску не влияет. При скрещивании куриц породы леггорн (ССII) с петухами породы белый виандот (ссii) в F2 13/16 кур с белым оперением и 3/16 с окрашенным оперением, у которых нормальный синтез пигмента и проявление гена С не ингибируется эпистатичным геном I. Наследование окраски у кур при взаимодействии двух пар генов 12 : 3 :1 Такое расщепление возможно, если рецессивная аллель эпистатичного гена имеет собственное фенотипическое проявление. Подобное взаимодействие генов наблюдается при наследовании масти лошадей. Эпистаз у лошадей Вороная масть определяется доминантным геном В, рыжая – рецессивным геном b, доминантный ген С из-за раннего поседения волоса дает серую масть и подавляет проявление гена В (С>B). В потомстве F2 от скрещивания серой (CCBB) и рыжей (ссbb) лошадей12/16 имеют серую масть, 3/16 – вороную и 1/16 - рыжую. При рецессивном эпистазе – криптомерии рецессивная гомозигота одного гена подавляет действие другого доминантного гена: аа>B. При криптомерии в потомстве наблюдается расщепление 9:3:4. Например, у мышей серая окраска шерсти получила название «агути» и обусловлена взаимодействием двух доминантных генов А и В. Рецессивный эпистаз у мышей Ген А определяет синтез черного пигмента, ген В способствует распределению пигмента по длине волоса, рецессивный ген b не влияет на окраску шерсти. Рецессивный ген а нарушает синтез пигмента и в гомозиготном состоянии подавляет действие гена В (ааВ– альбиносы). При скрещивании черных и белых мышей в F1 получаются лишь мыши типа агути (АаВв). В F2 9/16 мышей имеют окраску агути, 3/16 – черную и 4/16 – белую. Такое же расщепление характерно и для комплементарного взаимодействия генов. Характерные признаки эпистатического взаимодействия генов: действие двух пар генов на один признак; подавление проявления гипостатичного гена в F1; изменение формулы дигибридного расщепления в F2 за счет расширения доли особей с фенотипом гена супрессора, при этом характерные формулы расщепления для доминантного эпистаза 13:3, и 12:3:1, для рецессивного эпистаза – 9:3:4. Полимерия – это тип неаллельного взаимодействия генов, при котором несколько пар неаллельных генов влияют на формирование одного признака, вызывая сходные изменения. Явление полимерии было открыто в 1909 г. шведским генетиком Нильсоном-Эле, который описал серию однозначно действующих генов, определяющих окраску эндосперма зерна пшеницы. Это случай так называемой кумулятивной полимерии (сложной) когда степень проявления признака зависит от числа доминантных аллелей в генотипе. Так наследуется, например, длина початка у кукурузы. Наследование и изменчивость длины початков (в сантиметрах) у Zea mays в F1и F2 Одна из исходных линий (№ 60) имеет длину початков в пределах от 5 до 8 см, линия № 54 – от 13 до 21 см. Гибриды F1 имеют средние значения длины початков. Растения F2 фенотипически неоднородны, длина початков варьирует от 7 до 21 см. При этом длина початка пропорциональна числу (дозе) доминантных генов в генотипе. По типу кумулятивной полимерии наследуется пигментация кожи у человека. Например, в потомстве у чернокожего мужчины и белой женщины (или наоборот) рождаются дети с промежуточным цветом кожи – мулаты. У супружеской пары мулатов рождаются дети с цветом кожи от черного до белого, что определяется числом доминантных аллелей в генотипе: А1А1А2А2 × а1а1а2а2 чернокожий белый А1а1А2а2 × А1а1А2а2 мулаты А1А1А2А2 А1А1А2а2 А1а1А2А2 А1а1А2а2 А1А1а2а2 а1а1А2А2 А1а1а2а2 а1а1А2а2 а1а1а2а2 1/16 2/16 2/16 4/16 1/16 1/16 2/16 2/16 1/16 чернокожие «темные» мулаты «светлые» белые При некумулятивной полимерии (простой), наличие в генотипе хотя бы одного доминантного аллеля полимерных генов определяет треугольную форму плодов. Например, при скрещивании растений пастушьей сумки с треугольными плодами (стручками) с растением с овальными плодами в F1 образуются растения с плодами треугольной формы. Наследование формы стручка у Capsella bursa pastoris при взаимодействии двух пар генов При их самоопылении в F2 наблюдается расщепление на растения с треугольными и овальными плодами в соотношении 15:1. Если расщепление в F2 составляет 63:1, то в формировании признака участвуют 3 пары однозначных генов. При полимерном типе наследования возможно проявление трансгрессий. Трансгрессия – форма, у которой степень проявления признака больше, чем у родительских форм. Трансгрессии могут быть положительными и отрицательными: P: A1A1a2a2A3A3a4a4×a1a1A2A2a3a3A4A4 F1: A1aA2a2A3a3A4a4 F2: A1A1A2A2A3A3A4A4 aa1a2a2a3a3a4a4 положительная отрицательная трансгрессии Таким образом, трансгрессии проявляются в F2, когда родительские формы не обладают крайним проявлением признаков и не несут всех доминантных (при положительной трансгрессии) или всех рецессивных (при отрицательной трансгрессии) аллелей. Гены-модификаторы – гены, усиливающие или ослабляющие действие основного гена. Изучение окраски млекопитающих показало, что наряду с крайними формами, обладающими полным развитием пигмента (черная окраска) или его отсутствием (альбиносы), имеется целый ряд промежуточных форм – сероватых, бурых, желтых. Окраска шерсти зависит от наличия генов-модификаторов, не имеющих собственное проявление, но изменяющих действие основного гена. Гены-модификаторы контролируют вкус, цвет и аромат плодов, поэтому их рекомендуется накапливать для улучшения признаков сортов плодовых культур.

:

6. Взаимодействие аллельных генов.метод х2.

1.Доминирование – признаки, контролируемые геном в аутосоме перед-ся по аутосомно-доминантн.типу (равновероятно передаются и ♀, и ♂ потомкам), признаки, контролируемые геном в пол.хромосоме – по сцепленному с полом доминант.типу (перед-ся от отца только дочерям). Некоторые дом.мутации в гомозиг.состоянии – летальные; 2.Неполн.доминированиекак у кур андалузской породы (при скрещивании гомозигот с белым и черным оперением в F1 получают серых кур); 3.Кодоминирование – проявляются оба аллеля у гетерозигот (i.e., наледование групп крови у человека - три аллеля домин. IAи IB, рецесс. I0. IAIA или IAI0 – группа А, I0I0 – группа 0, IAIB – группа АВ, т.е.проявляются оба аллеля =>имеются оба типа поверх.антигенов); 4.Сверхдоминирование, гетерозис – усиление признака у гетерозигот (i.e.большая плодовитость у гетерозиготных мух, чем у исх.форм); 5.Неустойчивая доминантность – проявление признака у гетерозигот зависит от внешних условий и генотип.окружения (i.e., доминантная мутация Curly не проявляется в форме фенотипа с загнутыми вверх крыльями при 19°С; доминант.аллель w+ в рез-те инверсии попадает в прицентромерн.хроматин =>у гетерозигот w+/w проявляется рецесс.аллель w – белые глаза). 6.Условная доминантность – невозможность выявить гомозигот по домин.аллелю, т.к.такие особи нежизнеспособны (доминант.мутация действует летальна в гомозиготе).

II.Взаимодействие неаллельных генов: 1.Комплементарностьдва гена «работают» вместе =>развитие отличного от родит.варианта признака. Три типа: дом.гены разл-ся по фенотип.проявлениям, дом.гены имеют сходное проявление, и дом. и рец. гены имеют самостоят.фенотип.проявление. Примеры: ¶ наследование формы гребня у кур – A_B_ имеют ореховид.форму, A_bb – розовидную, bbA_ - гороховидную, aabb – обычную; ¶ наследование окраски кокона у тутового шелкопряда – желтые коконы только у A_B_, при наличии только одного дом.гена и двойных гомозигот по реццессиву – неокрашенные коконы. 2.Эпистаз. а.Доминантный эпистаз – дом.ген подавляет проявление другого дом.гена (i.e., у тыквы желтую окраску плода опред-ет ген А, зеленую опред-ет а, в присутствии дом.ингибитора I – окраски нет, I_A_ и I_aa имеют бесцветные плоды). б.Рецессивный эпистаз – рец.аллель одного гена подавляет, а между доминантными генами наблюд-ся комплементарность. При двойном эпистазе каждая гомозиг.рецесс.аллель подавляет домин.аллель другого гена. 3.Полимерия – гены дублируют действие друг друга. Два типа: некумулятивная (i.e.образование овального стручка только у пастушей сумки с генотипом a1a1a2a2, и треугольного – у всех остальных) и кумулятивная (окраска зерен пшеницы пропорциональна числу доминантных генов, самая интенсивная – у A1A1A2A2A3A3).

8.полимерия.плейотропное действие генов.серия

Множ.аллелей.генотип как целосн .система.

.Эпистаз. Вернемся к анализу взаимодействия генов рr и st у дрозофилы. Соотношение фенотипических классов в F2 можно представить себе и как следствие того, что рецессивная аллель рr в гомозиготе препятствует проявлению доминантной аллели st+. Точно так же рецессивная аллель st в гомозиготе препятствует проявлению доминантной аллели рr+. Действительно, то, что изве­стно о генетическом контроле синтеза бурого глазного пигмента у дрозофилы, вполне соответствует предложенному здесь объясне­нию. Такой тип взаимодействия носит название эпистатического, или эпистаза, и условно изображается: рr > st+ и st > pr+. В дан­ном случае рецессивная аллель рr эпистатична по отношению к доминантной аллели st+, a st эпистатична по отношению к рr+. Данный случай взаимодействия генов называют также двойным рецессивным эпистазом

По изменению числа и соотношения классов дигибридного расщепления в F2 рассматривают несколько типов эпистатических взаимодействий: простой рецессивный эпистаз > В; а > b или b > A; b > а), который выражается в расщеплении 9:3:4; простой доминантный эпистаз (А> В; А > b или В > А; В > а) с рас­щеплением 12:3:1 и т. д.

Один ген, подавляющий действие другого, называют эпистати-ческим геном, ингибитором или супрессором. Подавляемый ген носит название гипостатического.

Как уже показано, констатация того или иного типа взаимо­действия генов в дигибридном скрещивании условна. Тем не менее при кажущемся нарушении закона независимого наследования (появлении неожиданных классов в расщеплении или уменьшении числа классов), связанного с взаимодействием двух генов, всегда можно свести наблюдаемые соотношения в F2 к классическому 9:3:3:1. При этом важно понять, какие классы объединились, и тогда интерпретировать тип взаимодействия

Необходимо также отметить, что само словосочетание «взаимо­действие генов» условно. В действительности взаимодействуют продукты генов, а не сами гены, так что правильнее было бы говорить о взаимодействии фенов, а не о взаимодействии генов. Отсюда понятно, что судить о том, с каким скрещиванием имеет дело экспериментатор: моногибридным, дигибридным или полигиб­ридным — можно только на основании результатов полного гиб­ридологического анализа.

Полимерия. Наряду с комплементарным и эпистатическим принято также рассматривать взаимодействие генов по типу полимерии, В этом случае разные гены как бы дублируют дей­ствие друг друга, и одной доминантной аллели любого из взаимо­действующих генов достаточно для проявления изучаемой фенотипической характеристики. Так, при скрещивании растений пас­тушьей сумки с треугольными плодами (стручками) и с овальными плодами в F1 образуются растения с плодами треугольной формы. При их самоопылении в F2 наблюдается расщепление на растения с треугольными и овальными стручками в соотношении 15:1. Это объясняется тем, что существуют два гена, действующих одно­значно. В этих случаях их обозначают одинаково (А1 и A2). Тогда все генотипы: ai—а2—, ai—а1а2, а1а1A2— будут иметь одинаковую фенотипическую характеристику — треугольные струч­ки, и только растения a1a1a2a2 будут отличаться — образовывать овальные стручки. Это случай так называемый не кумулятивной' полимерии.

Однозначные, или полимерные, гены могут действовать и по типу кумулятивной полимерии. Так, шведский генетик Г. Нильсон-Эле в 1908 г. описал серию однозначно действующих генов, которые определяют окраску эндосперма зерен пшеницы. При этом интенсивность окраски зерен оказалась пропорциональной числу доминантных аллелей разных генов в тригибридном скрещи­вании. Наиболее окрашенными были зерна А1А1А2А2А3А3, а зерна а1а1а2a3а3 не имели пигмента. Между этими крайними типами при расщеплении в F2 наблюдались промежуточные ва­рианты в соотношении 1:6:15:20:15:6:1.

По типу кумулятивной полимерии наследуются многие количе­ственные признаки, например цвет кожи у человека; молочность, яйценоскость, масса и другие признаки сельскохозяйственных жи­вотных; длина колоса у злаков, содержание сахара в корнепло­дах сахарной свеклы и др. Изучением наследования таких призна­ков занимается специальный раздел генетики — генетика количественных признаков, которая важна прежде всего для селекции и разработки проблем микроэволюции

Плейотропия – тип взаимодействия, при котором оказывается влияние одного гена на развитие двух или более признаков.

МНОЖЕСТВЕННЫЙ АЛЛЕЛИЗМ: НАСЛЕДОВАНИЕ, ТИПЫ ВЗАИМОДЕЙСТВИЯ АЛЛЕЛЕЙ – наличие у гена множественных аллелей (следствием нескольких мутаций одного и того же гена). Пример: у Drosophilae melanogastrae – множеств.мутации по гену цвета глаз (white). w+ (красн.глаза) доминирует над всеми другими, w – рецессивн.по отн.к остальным, другие аллели проявляют неполн.доминирование (↓интенсивн-ти окраски глаз) – i.e., гетерозиготы wa(абрикос.глаза)/w имеют светло-абрик.глаза.

Множ.аллели могут проявлять и неполное доминирование, и кодоминирование (проявл-ся оба аллеля в составе гена), и супердоминирование (гетерозиготы по аллелям в составе гена имеют более яркое проявление признака, чем гомозиготы).

13. Закономерности наследования признаков, сцепл с полом.

Два скрещивания, различающиеся по тому, кто из роди­телей (самец или самка) вносит в зиготу доминантную (или ре­цессивную) аллель, называются реципрокными.

При скрещивании красноглазой самки и белоглазого самца в fi все мухи были красноглазыми, а в F2 происходило расщепле­ние в соотношении 3/4 красноглазых: 1/4 белоглазых. Это показы­вает, что признак «белые глаза» — рецессивный, а «красные гла­за» — доминантный. Необычным было то, что в f2 белоглазыми были только самцы, а среди красноглазых самки и самцы встречалиcь в соотношении 2:1.

Несмотря на то что признак «белые глаза» рецессивный, в F1 реципрокного скрещивания наблюдалось расщепление 1:1. При этом все самки fi ,были красноглазыми, а все самцы — белоглазыми.

Такое наследование получило название крисс-кросс (или крест-накрест) наследования: сыновья наследуют признак матери, а до­чери — признак отца. При таком скрещивании в F2 появляются в равном соотношении как красноглазые самки и самцы, так и белоглазые самки и самцы.

Таким образом, закон единообразия гибридов fi в одном из реципрокных скрещиваний не соблюдается. Реципрокные скрещи­вания дают разные результаты. При скрещивании белоглазых самок и красноглазых самцов в F2 наблюдается расщепление 1: 1 вместо 3:1, как ожидается по классической схеме моногибридного расщепления. Все это, казалось бы, не согласуется с прави­лами Г. Менделя. Объяснение.Самцы дрозофилы: пара различных половых хромосом (XY), самки: пара одинаковых пол хром (XX). => каждое скрещивание является как бы анализирующим по приз­наку пола: самки образуют только один тип гамет: с Х-хромосомой. Это гомогаметный пол. Самцы образуют два типа гамет: с Х- и с Y-хромосомой. Это гетерогаметныи пол. Случайное сочетание этих гамет самца и самки и обеспечивает статистически равное число самцов и самок в каждом поколении. Результаты, полученные при скрещивании красноглазых и бе­логлазых мух, Морган объяснил, предположив, что ген w находит­ся в Х-хромосоме, а Y-хромосома генетически инертна или по крайней мере не содержит гена w+. ( w-бел гл. w+-красн гл.). Этот тип наследования получил название наследования, сцеп­ленного с полом. Т.о., ген w сцеплен с полом, т. е. находится в Х-хромосоме. Гетерозиготные самки ww+, имеющие две Х-хромосомы, оказываются красноглазыми,=> рецес­сивность аллели w, обусловливающей белоглазие. В то же время самцы, несущие аллель w в своей единственной Х-хромосоме, всегда белоглазые, что согласуется с представлениями об инертности Y-хромосомы. Этим и объясняется насле­дование по схеме крисс-кросс в скрещивании (♀бел * ♂кр = 1♀кр : 1♂бел = 1♀кр :1♀бел : 1♂кр : 1♂бел ;

♀кр * ♂бел = ♀кр ♂кр = 2♀кр: 1♂кр: 1♂бел).

10.типы хромос-го определения пола у разных видов.гермафродитизм ,гинандроморфизм

Принадлежность к определенному полу – важная особенность фенотипа особи. Самки и самцы обладают различной хромосомной конституцией.

У человека, так же как у дрозофилы, клетки женских особей содержат по две Х-хромосомы, а мужских – одну Х- и одну У-хромосому. Такое же различие между полами характерно для большинства позвоночных, многих насекомых и других беспозвоночных, а также для многих двудомных растений. Однако генетические основы определения пола у всех этих организмов неодинаковы.

У Drosophila melanogaster носители единственной Х-хромосомы, не имеющие У-хромосомы, обладают нормальным мужским фенотипом (правда, при этом стерильны). Фенотип по полу D.m. определяется соотношением между числом Х-хромосом и аутосом (А).

Число Х-хромосом

Число наборов А

Х/А

Фенотипич. пол

3

2

1,5

Метасамка*

2

2

1

Норм. самка

2

3

0,67

Интерсекс

1

2

0,5

Норм. самец

1

3

0,33

Метасамец*

* - очень ослаблены и часто не доживают до стадии половозрелости (супер-)

Механизм, посредством которого отношение числа Х-хромосом к числу наборов аутосом определяет развитие того или иного фенотипа, не вполне понятен. Кроме того у D.m. известны конкретные гены, влияющие на определение пола. Мутантный ген tra (трансформатор) в гомозиготном состоянии придает особям с двумя Х-хромосомами, т.е. «генетическими» самками, фенотипический облик самцов (которые стерильны).

Развитие пола у млекопитающих – процесс, состоящий из двух этапов. Прежде всего хромосомный состав ядра определяет половую дифференциацию гонад, которые развиваются либо в семенники (ХУ/2А), либо в яичники (2Х/2А). Если образуются семенники, они выделят гормоны тестостерон, циркулирующий по эмбриону и вызывающий развитие соматических клеток по мужскому типу. Напротив, если образуются яичники, отсутствие тестостерона приводит к тому, что клетки развиваются по женскому типу.

Целый ряд данных указывает на то, что образование семенников является прямым результатом действия генов, расположенных в У-хромосоме. Прежде всего как и у мыши, так и у человека нерасхождение хромосом ведет к появлению зигот ХО/2А, которые развиваются по женскому типу и образуют яичники (недоразвиты). С другой стороны, в результате нерасхождения образуются также зиготы ХХУ/2А, которые развиваются по мужскому типу и дают самцов, имеющих семенники (сперматогенез отсутствует). У человека описаны случаи появления кариотипа ХХХХУ, при этом развитие идет полностью по мужскому типу. Эти данные свидетельствуют о том, что у млекопитающих в отличии от дрозофилы пол не регулируется соотношением Х/А; определяющую роль у них играет У-хромосома.

У птиц и бабочек самцы являются гомогаметным полом, а самки – гетерогаметным (типа ХУ или ХО). Половые хромосомы у этих видов иногда обозначают буквами Z и W, выделяя таким образом данный способ определения пола, при этом самцы обозначаются символом ZZ, а самки – ZW или ZO.

Совершенно другой механизм определения пола, называемый гаплодиплоидией, широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки – это диплоидные особи, а самцы (трутни) – гаплоидные. Самки развиваются из оплодотворенных яиц, а из неоплодотворенных развиваются трутни. У трутней, таким образом, нет отцов, хотя у них и есть деды по материнской линии. В процессе сперматогенеза у трутней не происходит редукции числа хромосом. Из оплодотворенной яйцеклетки может развиться либо «матка» - крупная, способная к размножению самка, либо стерильная рабочая самка. Это зависит от условий выкармливания личинки рабочими особями.

Большинство растений и некоторые животные гермафродитны, т.е. в одной особи сочетаются свойства обоих полов. Большинство гермафродитов размножаются путем самооплодотворения (самоопыления), хотя у некоторых животных и отдельных видов растений строение половых органов допускает перекрестное оплодотворение.

15. кроссинговер

В дальнейшем Т. X. Морган и его сотрудники в экспериментах с D. melanogaster обнаружили большое число примеров сцепления генов и показали, что это сцепление, как правило, неполное.

Рассмотрим один из первых экспериментов Т. X. Моргана по изучению сцепленного наследования.

У дрозофилы известны мутантные формы, отличающиеся от мух дикого типа черной окраской тела. Это признак рецессивный по отношению к признаку нормальной cерой окраски. Ген, контро­лирующий черную окраску тела, называется black и обозначает­ся b. Его доминантная аллель — b+.

Существует также рецессивный ген vestigial (vg), который в гомозиготном состоянии приводит к недоразвитию крыльев (за­чаточные крылья). Его доминантная аллель (vg+) контролирует нормальное развитие крыльев.

При скрещивании мух bb vg vg X b+ b+ vg+ vg+ в F1 были полу­чены особи, дигетерозиготные по этим генам. Все они были нормаль­ными по обоим признакам в соответствии с правилом доминирова­ния и законом единообразия F1. Далее были проведены два типа анализирующих скрещиваний. В первом из них брали самцов F1 и скрещивали с гомозиготными самками bbvg vg, а во втором — девственных самок, отобранных в F1, скрещивали с самцами bbvgvg. Результаты этих анализирующих скрещиваний оказались неодинаковыми (рис. 5.10, А). В Fа (потомство от анализирующего скрещивания) в первом случае были получены мухи только двух типов независимо от пола: 50 % мух имели черное тело и зачаточ­ные крылья и 50 % были нормальными по обоим признакам. Учитывая, что расщепление в анализирующем скрещивании отра­жает соотношение типов гамет, продуцируемых особями fi, сле­дует заключить, что самцы F1, использованные при первом скре­щивании, формировали гаметы только двух типов — с родитель­скими сочетаниями аллелей bvg и b+ vg+. Следовательнл в 100% случаев были гаметы только с родительскими сочетаниями исследов. генов.При втором скрещивании в Fa появились все возможные четы­ре типа потомков, а следовательно, самки fi давали четыре типа гамет: b vg, b+ vg, b vg+ и b+ vg+. Однако, как явствовало из расщеп­ления в Fa от этого скрещивания, четыре типа гамет образовались не равновероятно. Независимо от пола мухи распределились сле­дующим образом: 41,5 % черных с зачаточными крыльями; 41,5 % нормальных по окраске и с нормальными крыльями; 8,5 % черных с нормальными крыльями; 8,5 % нормальных по окраске с зачаточными крыльями. Таким образом, родительские сочетания b vg и b+ vg+ образовались в 83 % случаев, а новые комбинации — рекомбинантные сочетания bvg+ и b+vg (рис. 5.10, А) — в 17 % случаев.

В другом эксперименте в качестве родителей были исполь­зованы мухи, обладающие теми же признаками, но в другом соче­тании: мух с черным телом и нормальными крыльями скрещивали с мухами с нормальной окраской тела и с зачаточными крыльями. Затем вновь провели два типа анализирующих скрещиваний. В первом использовали самцов fi, во втором — самок F1. В обоих случаях их скрещивали с двойным гомозиготным рецессивом bbvg vg. И вновь были получены такие же результаты в отношении родительских и рекомбинантных сочетаний признаков в Fа. Если из F1 брали самцов, то наблюдали только

родительские комбинации признаков, а если из fi брали самок, то появлялись родительские (83%) и рекомбинантные (17%) сочетания признаков в тех же соотношениях, что и в первом экс­перименте, результаты которого представлены на рис. 5.10, А.

В обоих экспериментах наблюдается полное сцепление генов b и vg, если для анализирующего скрещивания берутся самцы fi. Если же для анализирующего скрещивания использовали са­мок fi, то сцепление было частичным.

Т. X. Морган дал следующее объяснение этим результатам. В первом эксперименте гены b и vg находятся в одной хромосоме, т. е. дигетерозиготные особи fi несут в одном гомологе аллели b и vg, а в другом гомологе — b+ и vg+ (рис. 5.10, А); во втором эксперименте b и vg+ в одном, а b+ и vg(рис. 5.10, Б).

У самцов дрозофилы кроссинговер вообще не происходит, поэ­тому гены, локализованные в одной хромосоме (или, говоря более строго, в одной паре хромосом), обнаруживают абсолютное сцепление, если при скрещивании используют дигетерозиготных самцов. В мейозе у дигетерозиготных самок дрозофилы fi возмо­жен обмен гомологичными участками гомологичных хромосом между локусами, в которых находятся гены b и vg. Такие обмены, или кроссинговер (от англ, crossingover — перекрест), приводят к новому рекомбинантному сочетанию аллелей генов b и vg в гомо­логичных хромосомах, которые затем расходятся к разным полю­сам. Эти обмены происходят с вероятностью 17 % ив итоге дают два класса реципрокных рекомбинантных сочетаний, или ре-комбинантов с равной вероятностью — по 8,5 % (рис. 5.11).

Сходным образом объясняется и результат, полученный ранее У. Бэтсоном и Р. Пеннетом: гены, контролирующие окраску цвет­ков (р) и форму пыльцевого зерна (/) у душистого горошка, локализованы в одной паре гомологичных хромосом, и между ними возможен крос­синговер.

5.цитологич.механизм при моногибр.и дигибридн.скрещ-ии. Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре признаков (например, гладкие или морщинистые семена). Рассмотрим схему моногибридного скрещивания. Из схемы видно, что родительские формы образуют одинаковые гаметы, в каждую из которых отходит по одному гену из аллельной пары. Пара аллелей (А и а) соответствует двум контрастным состояниям гена и локализована в идентичных локусах гомологичных хромосом. При слиянии родительских гамет формируется генотип гибридов первого поколения (Аа). Все гибриды первого поколения (F1) выглядят одинаково, т.е. имеют одинаковый фенотип, сходный с фенотипом одного из родителей. Эта закономерность иллюстрирует первый закон Менделя – закон единообразия гибридов первого поколения, а также правило доминирования. После того, как Мендель скрестил формы гороха, различающиеся по 7 признакам, у гибридов проявился, или доминировал, только один из пары родительских признаков. Рецессивный признак у гибридов первого поколения не проявлялся. Позднее это явление доминирования было названо первым законом Менделя или законом единнобразия гибридов первого поколения. При анализе наследованных признаков для краткости удобно пользоваться так называемым фенотипическим радикалом. Например, генотипы АА и Аа будут иметь фенотипический радикал А_, который означает, что в данном генотипе может быть как доминантный (А), так и рецессивный (а) аллель. Для объяснения закономерностей проявления и расщепления признаков у гибридов F2 Мендель предложил гипотезу чистоты гамет, согласно которой доминантный и рецессивный аллели в гетерозиготном генотипе F1 (Аа) не смешиваются, а образуют два типа гамет в равном соотношении: ½ А и ½ а. В случае полного доминирования один аллель (А) полностью подавляет действие другого (а). 4. Второй закон Менделя Мендель скрестил полученные гибриды между собой. Как он сам пишет: "в этом поколении наряду с доминирующими признаками вновь появляются также рецессивные в их полном развитии и притом в ясно выраженном среднем отношении 3:1, так что из каждых четырех растений этого поколения три получают доминирующий и одно - рецессивный признак" (Мендель, 1923,). Всего в данном опыте было получено 7324 семян, из которых гладких было 5474, а морщинистых 1850, откуда выводится отношение 2,96:1. Рецессивный признак не теряется, и в следующем поколении он снова проявляется (выщепляется) в чистом виде. Г. де Фриз в 1900 г. назвал это явление законом расщепления, а позднее его назвали вторым законом Менделя. При самоопылении гибридов F1 во втором поколении наблюдается расщепление по фенотипу в соотношении 3 : 1 (¾ гладких и ¼ морщинистых семян). Это соотношение выражает во второй закон Менделя – закон расщепления признаков. Разные классы потомков (с доминантным и рецессивным проявлением) Мендель вновь самоопылил. Оказалось, что потомки с рецессивным проявлением признака сохраняются в последующих поколениях после самоопыления константными. Если же самоопылить растения из доминирующего класса, то вновь будет расщепление, на этот раз в отношении 2:1. Как пишет сам Мендель: "Отсюда ясно, что из тех форм, которые в первом поколении имеют доминирующий признак, у двух третей он носит гибридный характер, но одна треть с доминирующим признаком остается константной". И далее заключает: "...гибриды форм, обладающих парой отличных признаков, образуют семена, из которых половина дает вновь гибридные формы, тогда как другая дает растения, которые остаются константными и удерживают в равных количествах или доминирующий, или рецессивный признаки" . В гибридах гаметы соединяются, но поскольку действует закон доминирования, внешне гибридные растения выглядят одинаково. Рецессивный детерминант в клетке сохраняется, и это становится очевидным во втором поколении, чему предшествует расхождение доминантного и рецессивного факторов по отдельным гаметам. По этой причине второй закон Менделя иногда называют "законом чистоты гамет". Для облегчения расчета сочетаний разных типов гамет английский генетик Р. Пеннет предложил запись в виде решетки - таблицы с числом ячеек, зависящим от числа типов гамет, образуемых скрещиваемыми особями (широко известна как решетка Пеннета), а в квадраты решетки вписывают образующиеся сочетания гамет. Так, в скрещивании Аа х Аа будут следующие гаметы и их сочетания: 5. Неполное доминирование и кодоминирование Кроме полного доминирования, описанного Менделем, найдены также неполное, или частичное доминирование и кодоминирование. При неполном доминировании гетерозигота имеет фенотип, промежуточный между фенотипами гомозигот. При этом правило Менделя о единообразии фенотипа в F1 соблюдается. В F2 и по фенотипу, и по генотипу расщепление выражается отношением 1:2:1. Примером неполного доминирования может служить промежуточная розовая окраска цветка у гибридов ночной красавицы Mirabilis jalapa, полученных от скрещивания красноцветковой и белоцветковой форм. Неполное доминирование оказалось широко распространенным явлением и было отмечено при изучении наследования окраски цветка у львиного зева, окраски оперения у андалузских кур, шерсти у крупного рогатого скота и овец и др. Кодоминирование – это явление, когда оба аллеля дают равноценный вклад в формирование фенотипа. Например особи, имеющие группу крови АА и ВВ у человека, гомозиготны, в случае гетерозигот АВ оба аллеля одинаково экспрессируются. 6. Анализирующее (реципрокное) скрещивание Чтобы проверить, является ли данный организм гомо- или гетерозиготным, можно, как это предложил Мендель, скрестить его с исходной гомозиготой по рецессивным аллелям. Такой тип скрещивания получил название анализирующего. В результате анализирующего скрещивания расщепление и по фенотипу, и по генотипу составляет 1:1, что свидетельствует о гетерозиготности одного из родителей, участвовавших в скрещивании. 7. Дигибридные скрещивания. Тригибридное скрещивание Г. де Фриз (1900) предложил дигибридами называть организмы, полученные от скрещивания особей, отличающихся одновременно двумя парами альтернативных признаков; если признаков три пары - тригибридами; многими признаками - полигибридами. Рассмотрим схему дигибридного скрещивания. В рассматриваемом примере признаки наследуются независимо и распределе-ние генов связано с независимым расхождением двух пар гомологичных хромосом в мейозе. Дигетерозиготные растения F1 образуют 22 = 4 типов гамет. При сочетании гамет при дигибридном скрещивании получается 42 = 16 комбинаций. В F2 по каждому признаку наследование происходит независимо от другого признака - третий закон Менделя - закон независимого комбинирования признаков. Расщепление по каждой паре признаков в отдельности происходит так же, как и при моногибридном скрещивании в отношении 3 : 1. По фенотипу в F2 расщепление происходит на 22 = 4 класса в соотношении: (3А -: 1аа) х (3В - : 1вв) = 9А - В - : 3А - вв : 3 ааВ - : 1 аавв жёлтых жёлтых зелёных зелёных гладких морщин. гладких морщин. По генотипу в F2 расщепление происходит на 32 = 9 классов в соотношении: (1АА : 2Аа : 1аа) х (1ВВ : 2Вв : 1вв) = 1ААВВ : 2ААВв : 1ААвв : 2АаВВ : 4АаВв : 2Аавв : 1ааВВ : 2ааВв : 1аавв. Т. о., коэффициент гомозиготного генотипа - 1 (ААВВ, ААвв, ааВВ, аавв), гетерозиготного генотипа по одному гену - 2 (ААВв, АаВВ, Аавв, ааВв), гетерозиготного генотипа по двум генам - 4 (АаВв). Анализ полигибридных скрещиваний производится также, как и дигибридных, однако с каждым увеличением числа признаков возрастает число комбинаций гамет. Если у дигибрида, как мы видели, получается 16 комбинаций, у тригибрида их уже 64, а у тетрагибрида - 256. Классическое расщепление 9:3:3:1 в дигибридном скрещивании получается не всегда, для этого необходимо соблюдение многих условий. Следует иметь ввиду, что в полигибридных расщеплениях также может быть неполное доминирование, приводящее к серьезным изменениям в частотах встречаемости разных фенотипических классов.

Источник:

9. Пол как признак. .биология пола.типы опр-я пола.прогамный.сингамный.эпигамный. Пол как признак Половой диморфизм. Первичные и вторичные половые признаки. Половое размножение присуще большинству живых организмов. Существование полового процесса у прокариотов и эукариотов предполагает наличие по крайней мере двух полов. В природе чаще всего встречается раздельнополость, т.е. самостоятельное существование женских и мужских особей. Однако иногда у животных, а чаще у растений имеются формы, у которых оба пола существуют совместно. Это так называемый гермафродитизм. Пол представляет собой совокупность признаков и свойств организма, обеспечивающих воспроизведение потомства и передачу наследственной информации. Половой диморфизм – это различия морфологических, физиологических и биохимических признаков у особей разных полов. У прокариотов черты полового диморфизма выражены слабо и ограничиваются наличием в мужских бактериальных клетках полового фактора – фрагмента ДНК, существующий виде цитоплазматической структуры или структуры, интегрированной в хромосому. У водорослей, грибов, некоторых простейших (инфузории) имеется несколько половых форм. У водорослей, к примеру, это плюс- и минус-формы, выполняющие соответственно роль «мужских» и «женских» клеток. У более высоко развитых эукариотов наблюдается четкий половой диморфизм, при котором различия между особями женского и мужского пола проявляются уже и по морфологическим признакам. Все признаки, отличающие один пол от другого, условно делят на 2 группы: первичные и вторичные. Первичные половые признаки обеспечивают образование гамет и соединение их в процессе оплодотворения. К ним относятся гонады и половые органы. Вторичные половые признаки – это совокупность морфологических и физиологических признаков и свойств, определяющих фенотипические различия между особями разных полов. Значение их в размножении косвенное (тип волосяного покрова, тембр голоса, брачная окраска животных), но формирование контролируется деятельностью половых гормонов, т.е. они связаны с функцией гонад. Иногда выделяют признаки, не относящиеся к чертам полового диморфизма, но проявление их зависит от гормональной активности половых желез. Так, гены молочности не выражаются фенотипически у быков, яйценоскости – у мужских особей птиц. Количество мужских и женских половых гормонов в крови влияет и на форму доминирования (ген рогатости у баранов, ген лысости у человека). 2. Определение пола. Давно замечено, что соотношение мужского и женского полов в потомстве фактически от любого скрещивания близко соответствует соотношению 1:1, т.е. в достаточно большой группе потомков на 100 самцов рождается 100 самок. Совершенно очевидно, что такое расщепление коррелирует с результатами особого генетического скрещивания – аналитического – когда один из родителей гетерозиготен, другой – гомозиготен по анализируемому признаку. Поэтому a priori можно предположить, что один из полов как бы гетерозиготен, а другой гомозиготен по фактору, определяющему пол. Цитологический анализ выявляет наиболее заметное различие у полов – сочетание половых хромосом в кариотипе, причем один пол имеет одинаковые хромосомы, в кариотипе другого - две разных половых хромосомы, т.е. этот пол как бы "гетерозиготен". Привлекает внимание огромное разнообразие вариантов полового размножения и соответствующих ему версий определения пола, затруднена даже их классификация. Выделяют несколько типов определения пола в зависимости от числа и состава половых хромосом, например, у самца могут быть Х- и Y-хромосомы, а у самки – XX. К такому типу относятся человек, дрозофила, водяной клоп Ligaeus, по имени которого и назван данный тип определения пола, а также многие другие виды животных. Еще один тип, названный по имени другого водяного клопа Protenor, и встречающийся у некоторых бабочек и червей, связан с наличием у самцов Х0 хромосом, а у самок двух Х-хромосом. Другой тип хромосомного определения пола найден у птиц, некоторых бабочек, рыб, земноводных и цветковых растений. У них гетерогаметным (т.е. с разными половыми хромосомами) полом является женский, и самки имеют набор половых хромосом ZW или Z0, в то время как самцы – ZZ. Известны и некоторые другие типы определения пола. В некоторых случаях появление мужского или женского пола определяется не наследственными различиями, а возникает под влиянием условий среды. Классическим примером служит морской червь Bonellia viridis. Самцы размером в несколько миллиметров живут в матке самки, где выполняют свою задачу – оплодотворяют яйцеклетки. Самец является типичным паразитом, живущим внутри тела самки, размер которой примерно равен размеру сливы. Свободно плавающие личинки, развивающиеся после оплодотворения яйцеклеток, некоторое время ведут свободный образ жизни, а затем прикрепляются к хоботу половозрелой самки, либо оседают и прикрепляются ко дну. Половые различия между самкой и самцом у морского червя Bonellia viridis Личинки этих двух сортов ничем друг от друга не отличаются. Куда попадает данная личинка – это дело случая. Однако во что превращается личинка, т.е. будет ли она самцом или самкой, определяется условиями в период несвободной жизни личинки. Личинки, прикрепившиеся к хоботу самки, развиваются в самцов. Они проникают в женские половые органы и живут там как паразиты. Личинки, прикрепившиеся ко дну, развиваются в самок. 3. Гинандроморфы, интерсексы, гермафродиты и другие половые отклонения У дрозофилы и у других организмов известны случаи гинандроморфизма, когда разные участки тела по своим признакам принадлежат разным полам. Организм выглядит как мозаик, у которого одна часть мужская, а другая женская (Рис). В данном случае зигота имела две X-хромосомы и должна была развиться в самку. Она была гетерозиготой по генам белоглазия и маленьких крыльев w m/w+m+. Во время первых делений дробления хромосома w+m+ была утеряна и экватор митотического деления располагался по линии симметрии от головной до хвостовой части эмбриона. В результате левая часть тела мухи состояла из клеток, имеющих только одну Х-хромосому, что соответствует генотипу самца. Правая сторона имела две Х-хромосомы и развилась в самку. У непарного шелкопряда Lymantria dispar имеются резкие различия между самками и самцами. Скрещивания разных географических рас этой бабочки (европейских и японских) привело к появлению форм, переходных по своим Билатеральный гинандроморф y Drosophila melanogastei признакам между самцами и самками, т.е. к появлению интерсексуальности. Интерсексы обнаружены и у дрозофилы. От гинандроморфов интерсексы отличаются тем, что у них отсутствуют различно детерминированные по полу сектора. У интерсексов до определенного момента развития сохраняется генетически детерминированный пол, но затем развитие продолжается в направлении противоположного пола. В результате интерсексы отличаются от нормальных особей тем, что у них первичные и вторичные половые признаки носят промежуточный характер, образуя непрерывный ряд переходов от нормального самца к нормальной самке. Наряду с разнополостью у многих растений и у низших животных мужской и женский пол совмещается в одном организме, который таким образом является гермофродитом.

Источник:

12. Дифференциальная активность генов в онтогенезе

Детерминация обеспечивает образование равного кол-ва самцов и самок, что необходимо для нормального самовоспроизведения вида. Типы: 1) эпигамный – пол особи определяется в процессе онтогенеза, зависит от внешней среды. 2) прогамный – пол определяется в ходе гаметогенеза у родителей особи. 3) сингамный – пол определяется в момент слияния гамет. Первичное и вторичное соотношение полов: соотношение полов, кот определяется в момент слияния гамет, наз-ся первичным, всегда 1:1. Любое изменение в соотношении полов, как до, так и после рождения, наз-ся вторичным. Обычно после рождения оно смещается в пользу женского пола, поэтому у многих видов животных и у чел-ка мужских особей рождается больше, чем женских: кролики – 57%, человек – 51%, птицы – 59%. Проблема регулирования пола: имеет важное хозяйственное значение. Н-р: в молочном скотоводстве, в яичном птицеводстве желательны самки, а там, где основной продукт – мясо, лучше самцы. Проблема в том, чтобы разделить сперму на х- и у- фракции. Способы: 1) электрофорез – х – спермии имеют отрицательный заряд – движутся к катоду, а у – спермии – к аноду. Гарантия 80%. 2) Метод осаждения – х – сперма более плотная и осядает вниз, а у – остаётся сверху. 3) Использование набора кислот для изменения рН женских половых путей для создания условий только для х – или только для у-. 4) Партеногенез: геногенез – получение самок – рентгеновскими лучами облучают овоцит. первого порядка, тем самым задерживают расхождение хром-м, образ-ся яйцеклетка с диплоидным набором хром-м, в кот без оплодотворения развивается самка. Андрогенез – получение самцов – ядро яйцеклетки убивают лучами рентгена, затем в неё проникают два спермия, ядра сливаются, давая диплоидный набор, будет самец. 5) Метод разделения спермы на фракции по кол-ву ДНК в спермиях. 6) Чем моложе родители, тем вероятность рождения у них мужского пола больше. 7) Чем больше спермы в половых путях самки, тем вероятнее рождение мужского пола. 8) Чем больше хранится сперма – самка. 9) У птицы кормление: если петуху в корм добавлять Са, то самка, а если К – самцы. 10) В любой популяции действует закон равновесия, т.е. соотношение полов стремится 1:1..практич.значение регуляции пола.

Дифференцировка – возникновение различий между клетками, тканями, органами. До 7 дня зигота тотипотентна, т.е. из любой её кл можно вырастить целый организм или орган. После 7 дня тотипотентность теряется из-за дифференцировки. Все структурные кл условно делят на 3 типа: 1) гены “домашнего” хоз-ва – работующего во все кл организма; 2) гены, работающие в специализированных тканях; 3) гены, выполняющ. 1-ну узкую функцию. Большинство генов многоклеточного организма работают только на определённых стадиях онтогенеза или в определённых тканях. Примеры неравномерной работы генов: 1) инактивация “х” хр-мы у самок. Сначала на ранних стадиях эмбриогенеза из 2-х “х” хр-м по принципу случайности, выбирается одна, затем она инактивируется мителированием – её её неактивное состояние стабилизируется, т.е.сохраняется в течение всеё жизни данного организма. Любой женский организм мазаичный, т.е. 50% отцовских, 50% материнских “х” хромосом. Неравномерная активность отцовских и материнских генов наз. геномным иниринтингом. 2) у эукариот зигота до стадии поздней бластулы развивается за счёт информации, содержащеёся в информосомах. Гены ядра начинают работать со стадии гаструлы. 3) работа гигантских хромосом в слюнных железах личинок насекомых. На них находятся активные гены: 4) изменение состояния гемоглобина у человека и животных с возрастом.

17.цитологические карты.принцип составления. Карта хромосом - план расположения генов в хромосоме. Гены расположены в хромосомах в линейной последовательности на определенных расстояниях друг от друга. Явление торможения кроссинговера на одном участке кроссинговером на другом получило название интерференции. Чем меньше будет расстояние, разделяющее три гена, тем больше интерференция. Принимая во внимание линейное расположение генов в хромосоме, взяв за единицу расстояния частоту кроссинговера, Морган составили первую карту расположения генов в одной из хромосом дрозофилы: сh___13.6___ y___28.2___b. При построении карт указывают не расстояние между генами, а расстояние до каждого гена от нулевой точки начала хромосомы. Доминантный аллель обозначается прописной буквой, рецессивный - строчной. После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, построенное на основании частоты кроссинговера, истинному расположению. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Материалом для проверки служили хромосомы, у которых вследствие мутации возникали различные хромосомные перестройки: не хватало отдельных дисков, или они были перевернуты, или удвоены. Физические расстояния между генами на генетической карте не вполне соответствуют установленным цитологическим. Однако это не снижает ценности генетических карт хромосом для предсказания вероятности появления особей с новыми сочетаниями признаков. На основании анализа результатов многочисленных экспериментов с дрозофилой Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

23.генетическая роль днк и рнк .ее доказательство.

1) Трансформация бактерий. (В 1928 г впервые получили доказательство возможности передачи наследственных задатков от одной бактерии к другой. Вводили мышам вирулентный капсульный и авирулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболели пневмонией и погибли. При введении авирулентного штамма – живые. При введении вирулентного капсульного штамма, убитого нагреванием, мыши также не погибали. Ввели смесь живой культуры авирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного – мыши заболели пневмонией и погибли. Из крови погибших животных были выделены бактерии, кот обладали вирулентностью и были способны образовать капсулу. Живые бактерии авирулентного бескапсульного штамма трансформировались – преобрели свойства убитых болезнетворных бактерий. Трансформирующий фактор – ДНК.). 2) Размножение вирусов. (Вирусы репродуцируются только внутри клетки, какого – то организма и используют для этого её ферментные системы и другие необходимые компоненты. Круг хозяев для определённого вируса может быть ограничен. Вирусы могут инфицировать одноклеточные микроорганизмы – микоплазмы, бактерии и водоросли, а также клетки высших растений и животных.)

14.сцепление генов.хромосомная теория насл-ти. Основные положения хромосомной теории наследственности

На основании анализа результатов многочисленных экспериментов с дрозофилой Т.Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом. Признаки, гены которых наход-ся в половых хром-мах, наз-ся сцепленные с полом. В у - хром-ме генов. почти нет, поэтому если говорят, что признак сцеплен с полом, значит ген наход-ся в х - хром-ме. Если ген расположен в у - хром-ме, то это обычно оговаривается. У чел-ка известно около 300 генов, находящ-ся в х - хром-ме и вызывающих наследственные болезни. Почти все они рецессивны. Наиболее известны: гемофилия, дальтонизм, мускульная дистрофия. Если рецессивный ген болезни сцеплен с х - хром-мой, то носителем явл-ся женщина, а болеют мужчины, т.к. у них этот ген наход-ся в одинарной дозе или гомозиготном состоянии. Доминантны х - сцепленных заболеваний известно мало, в том числе некоторые формы рахита, нарушение сегментации кожи. Считается, что мутация в х - хром-ме чаще происходит в сперматогенезе, т.е. у отца и эту х-хром-му получит дочка. Наследование, сцепленное с у - хром-мой: в у - хром-ме наход-ся около 35 генов, в том числе 7 вызывают болезни (гипертрикоз, нарушение сперматогенеза). Т.к. отец передает у - хром-му только сыну, такие болезни наследуются по мужской линии и наз-ся голондрическими. У животных известно только х - сцепленное рецессивное наследование, в том числе гемофилия у собак, бесшерстность у телят, отсутствие зубов, деформация передних ног у телят, карликовость у кур.

25.нуклеин.к-ты.структура днк.полиморфизмднк.типы рнк.

Строение и типы РНК

РНК – одноцепочечная полинуклеотидная, за исключением РНК эритроцитов и некоторых вирусов. В состав нуклеотид входят: фосфат, сахар рибоза, азотистые основания: А,Г,Ц,У. 3 типа: и-РНК-5%- переписывает информацию с ДНК в ядре и переносит её в цитоплазму на рибосомы. Длина зависит от длины переписываемого гена. р-РНК – 80% - размер её измеряется в единицах Сверберга. 120-5000 нуклеотид. Входит в состав рибосом. 6 видов. т- РНК – 15% - 75-90 нуклеотидов. 80-100 видов. Имеют вторичную структуру в виде листка клевера. Имеет акцепторный стебель и антикодон, а на нём 3 неспаренных нуклеотида (АЦЦ).ф-я – перенос аминокислот на рибосомы, где строится белок. На каждую аминокислоту приходится несколько разных видов т – РНК – изоакцепторный. Аминокислота прикрепляется к акцепторному стеблю т-РНК с помощью фермента – синтетаза. Каждой аминокислоте своя синтетаза. Нуклеиновые кислоты составляют 1 – 5 % сухой массы клетки и

представлены моно- и полинуклеотидами. Различают два типа нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами . Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями.

Нуклеотиды, входящие в состав РНК, содержат пяти-углеродный сахар — рибозу , одно из четырех органических соединений, которые называют азотистыми основаниями : аденин , гуанин , цитозин , урацил (А, Г, Ц, У) — и остаток фосфорной кислоты.

Нуклеотиды, входящие в состав ДНК, содержат пяти-углеродный сахар — дезоксирибозу , одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т)—и остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезокси-рибозы) с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований.

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью . Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основаниеЦ.

А (аденин) — Т (тимин) Т (тимин) — А (аденин) Г (гуанин) — Ц (цитозин) Ц (цитозин) -Г (гуанин)

Эти пары оснований называют комплиментарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другуФ называют комплиментарными нитями.

Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об эт и х свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток. Однако небольшое их количество содержится в митохондриях и хлоропластах.

Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка считывается с ДНК и передается особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом — идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах. В синтезе белка принимает участие другой вид РНК — транспортная (т-РНК), которая подносит аминокислоты к рибосомам. В состав рибосом входит третий вид РНК, так называемая рибосомная РНК (р-РНК), которая определяет структуру рибосом. Молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы — рибоза и вместо тимина — урацил. Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков. Удвоение ДНК.ДНК обладает уникальными свойствами: способностью к самоудвоению (репликации) и способностью к самовосстановлению (репарации).

Перед каждым клеточным делением при абсолютно точном соблюдении нуклеотидной последовательности происходит самоудвоение (редупликация) молекулы ДНК. Редупликация начинается с того, что двойная спираль ДНК временно раскручивается. Это происходит под действием фермента ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды. Каждая одинарная цепь по принципу химического сродства (А-Т, Г-Ц) притягивает к своим нуклеотидным остаткам и закрепляет водородными связями свободные нуклеотиды,

находящиеся в клетке. Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплиментарной цепи. В результате получаются две молекулы ДНК, у каждой из них одна половина происходит от родительской молекулы, а другая является вновь синтезированной, т.е. две новые молекулы ДНК представляют собой точную копию исходной молекулы.

Репликация осуществляется под контролем ряда ферментов и протекает в несколько этапов. Она начинается в определенных точках молекулы ДНК. Специальные ферменты разрывают водородные связи между комплементарными азотистыми основаниями, и спираль раскручивается. Полинуклеотидные цепи материнской молекулы удерживаются в раскрученном состоянии и служат матрицами для синтеза новых цепей. С помощью фермента ДНК-полимеразы из имеющихся в среде трифосфатов дезоксиринуклеотидов (дАТФ, дГТФ, дЦТФ, дТТФ) комплементарно материнским цепям собираются дочерние цепи. Репликация осуществляется одновременно на обеих материнских цепях, но с разной скоростью и некоторыми отличиями. На одной из цепей (лидирующей) сборка дочерней цепи идет непрерывно, на другой (отстающей) – фрагментарно. В последующем синтезируемые фрагменты сшиваются с помощью фермента ДНКлигазы. В результате из одной молекулы ДНК образуется две, каждая из которых имеет материнскую и дочернюю цепи. Синтезируемые молекулы являются точными копиями друг друга и исходной молекулы ДНК. Такой способ репликации называется полуконсервативным и обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была в материнской молекуле. Репарацией называют способность молекулы ДНК «исправлять» возникающие в её цепях изменения. В восстановлении исходной структуры участвуют не менее 20 белков: узнающих измененные участки ДНК и удаляющих их из цепи, восстанавливающих правильную последовательность нуклеотидов и сшивающих восстановленный фрагмент с остальной молекулой ДНК. Перечисленные особенности химической структуры и свойств ДНК обусловливают выполняемые ей функции. ДНК записывает, хранит, воспроизводит генетическую информацию, участвует в процессах ее реализации между новыми поколениями клеток и организмов.

22.коньюгация.сексдукция.ген.картир.

Бак.хромосом. Конъюгация – перенос генетического материала от одной бактериальной клетки (донора) к другой (реципиенту) при их непосредственном контакте. Один штамм является донором (мужским), а другой – реципиентом (женским). Клетки донора обладают половым фактором F. Он является конъюгативной плазмидой и представляет собой циркулярно-замкнутую молекулу ДНК. Половой фактор F обладает способностью включатся в геном бактерии и тогда из цитоплазматической структуры превращается в фрагмент хромосомы. При конъюгации клетки - доноры F+ соединяются в клетки – реципиентами F- при помощи конъюгационного мостика – особой протоплазматической трубки, образуемой клеткой F+. В клетке донора под влиянием фермента эндонуклеазы в точке внедрения фактора F происходит разрыв цепи ДНК. Свободный конец одной из цепей ДНК постепенно начинает передвигаться через конъюгационный мостик в клетку реципиента и сразу же достраивается до двухцепочечной структуры. На оставшейся в клетке – доноре цепи ДНК синтезируется вторая цепь. Конъюгационный мостик очень хрупкий, легко разрывается, и вся цепь не успевает перейти. При конъюгации половой фактор вместе с фрагментом ДНК иногда переходит в женскую клетку, превращая её в мужскую и передавая ей свойства, контролируемые фрагментом хромосомы донора. Процесс переноса генетической информации при помощи полового фактора называется сексдукцией.

21.рекомбин-я у прок.

Трансформация.трансду

Кция. 2.Способы передачи наследственной информации у бактерий В 1928 г. Ф. Гриффите получил интересные данные по заражению мышей возбудителем пневмонии. Он исполь­зовал два штамма пневмококка: вирулентный штамм S (клетки его имеют полисахаридную капсулу и дают глад­кие колонии) и невирулентный штамм R (клетки не об­ладают капсулой и образуют шероховатые колонии). За­ражение мышей вирулентным штаммом вызывало их гибель. При инъекции невирулентного штамма мыши не болели. Пневмония у них не развивалась и после введе­ния вирулентного штамма, убитого нагреванием. Однако, если мышам вводился одновременно убитый штамм S и живой штамм R, через некоторое время они погибали от пневмонии, а при посеве крови были выделены живые пневмококки с капсулой. Таким образом, мож­но было предполагать, что свойства убитого вирулентно­го штамма как бы перешли к живому невирулентному. Это явление было названо трансформацией. Природу этого явления в 1944 г. установил О. Эвери. Он провел аналогичный эксперимент с пневмококками in vitro. Спонтанно штамм S мог мутировать, т. е. при­обретать свойства штамма R, но обратная мутация (R→S), как правило, не происходит. Однако добавле­ние к R экстракта убитых пневмококков S увеличивает вероятность обратной мутации. Эвери выделил вещество из убитых бактерий вирулентного штамма S, очистил, изучил химические свойства и назвал его трансформи­рующим фактором. Трансформирующий фактор инактивировался лишь одним ферментом — дезоксирибонуклеазой, расщепляющим только ДНК. Это означало, что трансформирующим веществом является ДНК. Так было получено первое подлинное доказательство генетической роли нуклеиновых кислот. Однако это открытие не сразу привлекло всеобщее внимание, поскольку в то время было мало известно о химической природе генов, структуре белков и ДНК. Тем не менее открытие Эвери сти­мулировало более детальное изучение нуклеиновых кис­лот. В 1947 г. Э. Чаргафф установил, что количество нуклеотидов ДНК и их соотношение у разных организ­мов неодинаково. Это навело на мысль, что порядок расположения нуклеотидов в молекуле ДНК, очевидно, как-то связан с ее генетической специфичностью. Трансформация сводится к включению вещества хро­мосомы одной бактерии (донора) в хромосому другой (реципиента) и служит одним из способов обмена гене­тической информацией у бактерий. Однако механизм ее еще недостаточно изучен. Долгое время считалось, что генетическая трансфор­мация свойственна только одноклеточным. В настоящее время установлено, что явления, напоминающие генети­ческую трансформацию, могут происходить и в клетках эукариотов. При взаимодействии некоторых вирусов с клетками животных возможна трансформация эукариотной клетки. Полученная ею новая генетическая инфор­мация устойчиво передается при последующих клеточ­ных делениях. Получены неоспоримые доказательства существо­вания генетической трансформации в клетках млекопи­тающих. Дж. Берг и В. Мак-Брайд при культивировании клеток мыши в среде с изолированными хромосомами клеток человека выделили потомство клеток с маркера­ми последнего. (Имеются основания считать, что в геном реципиента включается лишь небольшой участок хромо­сомы донора, около 2 %.) Пока мало известно о харак­тере связи между геномом реципиента и фрагментом хромосомы донора, но, несомненно, связь эта довольно прочная — клетки мыши не теряли приобретенные свой­ства даже при выращивании в неселективных условиях. В 1952 г. Н. Циндер и Дж. Ледерберг описали еще один способ передачи наследственной информации у бак­терий. Исследования проводились на бактериях мыши­ного тифа Salmonella fyphimurium. В U-образную трубку с бактериальным фильтром посередине засевались на полную питательную среду 2 штамма: в одну часть пробирки штамм 22А (ауксотрофный по мутации, тормозящей синтез триптофана Т-; это требовало добав­ления данной аминокислоты в среду для культивирова­ния), в другую — штамм 2А дикого типа (способен син­тезировать триптофан Т+). Совместное выращивание двух штаммов бактерий мышиного тифа привело к тому, что через некоторое время при посеве на минимальную среду бактерии штамма 22А дали небольшое количество колоний. Следовательно, они каким-то образом приобре­ли способность синтезировать триптофан. Переход бак­терий из одного колена пробирки в другое преграждался бактериальным фильтром, а возможность обратной му­тации штамма 22А исключалась, так как он был стабиль­ным в этом отношении. По мнению Циндера и Ледерберга, перенос информации осуществлялся фагом. Было установлено, что ДНК-содержащие вирусы (фаги) де­лятся на две группы: паразиты, приводящие к гибели бактериальные клетки, и умеренные (симбиотические), не вызывающие заболевания и разрушения клеток. Уме­ренные вирусы, или профаги, существуют в клетке в виде ДНК, интегрированной с ДНК бактерии, и реплицируют­ся вместе с ее хромосомой. Явление такого со­существования умеренного фага и бактерии носит назва­ние лизогении. Лизогенная клетка (иначе клетка с профагом) обычно ничем не отличается от других бактерий. Обнаружить профаг удается лишь при активизации его ионизирующим и ультрафиолетовым излучением или при воздействии каких-либо иных факторов, вследствие чего он превращается в зрелый фаг, убивает клетку и исполь­зует ДНК бактерии на построение своей ДНК. Таким образом, профаг при заражении новой клетки может со­общить ей часть наследственной информации от старой. Штамм 2А оказался лизогенным по фагу, который из умеренного в силу каких-то причин превратился в пара­зитический и при заражении новых бактерий перенес в них часть фрагмента ДНК с геном, контролирующим синтез триптофана. Бактериальный фильтр не послужил преградой для вирусов, так как размеры их очень малы и они могут фильтроваться. Явление переноса наследственной информации бак­териофагом от одних бактерий к другим называется трансдукцией. Механизм трансдукции еще недостаточно изучен. Предполагается, что фрагмент чужеродной ДНК вначале самостоятельно реплицируется, а затем путем рекомбинации включается в хромосому клетки-реципи­ента. Трансдукция в настоящее время детально изучает­ся в связи с вопросами генной инженерии, поскольку мо­жет рассматриваться в качестве одного из путей пере­носа наследственной информации от клетки к клетке. В 1946 г. Дж. Ледерберг и Е. Татум при совместном выращивании двух ауксотрофных комплементарных мутантов кишечной палочки Е. coli (В-М-Р+Т+ и В+М+Р-Т-) в течение ночи получили культуру В+М+Р+Т+, которая оказалась способной в отличие от исходных штаммов расти на минимальной питательной среде без добавления метионина, биотина, треонина и пролина. Трансформации и трансдукции здесь явно не было. При наличии бактериального фильтра в сосудах, где выращивались культуры, взаимного обмена инфор­мацией не наблюдалось. Очевидно, существует очень тесный контакт между бактериями. На основании этого впервые было высказано предположение о возможности у бактерий полового процесса. Половой процесс у бакте­рий, при котором осуществляется перенос генетической информации при тесном контакте клеток, был назван конъюгацией. Впоследствии удалось получить микрофо­тографии конъюгирующих бактерий кишечной палочки. Передача информации при конъюгации носит односторонний характер. В 1952 г. Б. Хейс показал, что при конъюгации одна из клеток (мужская F+) служит донором, другая (женская F-) — реципиентом. Донорные клетки несут особый фактор F (фрагмент молекулы ДНК; автономно существует в цитоплазме и содержит около 10 пар нуклеотидов), являющийся нехромосомной структурой. Реципиенты этого фактора не имеют. Процесс конъюгации и механизм переноса генетиче­ского материала был описан у бактерий Е. coli в 1955 г. В. Вольманом и Ф. Жакобом. Они показали, что при конъюгации фактор F может переходить из мужской клетки в женскую и превращать ее в F+. При этом дру­гие свойства бактериальной клетки не изменяются. Пе­редача полового фактора происходит как бы независимо от других генетических маркеров. Клетки штаммов F- внутри себя не рекомбинируют. При обратной мутации половой фактор у бактерий может вновь приобрести автономное состояние. Осво­божденный из хромосомы, подобно профагу, он иногда захватывает фрагмент бактериальной хромосомы, при­легающий к нему, и при конъюгации вместе с ним пере­ходит в женскую клетку, сообщая ей свойства донорной клетки и некоторые другие свойства, контролируемые фрагментом хромосомы. Такой процесс переноса наслед­ственной информации из одной бактериальной клетки в другую посредством полового фактора называется сексдукцией. Таким образом, половой фактор является саморедуплицирующим генетическим элементом, способным су­ществовать в двух состояниях: автономном и интегриро­ванном в хромосому. Такие участки генетического мате­риала получили название эписом.

Источник:

28. Современное представление о структуре и функции генов

Ген - совокупность сегментов ДНК, которые вместе образуют наследственную единицу, отвечающую за функциональную продуктивность, т.е.за белок или т-РНК, или р-РНК. В сост входит: 1) единица транскрипции, т.е.участок ДНК, кодирующий не зрелую РНК; 2) промотр – длина гена может быть от 190-16000 пар нуклеотид. Ген явл единицей ф-и, т.е.есть ген целиком, а не отдельн его куски, кодирует РНК. Явл единицей мутации и един рекомбинации могут быть отдельные нуклеотиды в гене, т.е.даже 2 соседн. нуклеотиды могут разъединить с помощью кроссинговера и даже 1 нуклеотид может мутировать, место мутации в гене наз сайт. Сайты, на которых мутации происход. часто – горячи точки. У прокариотов гены непрерывные, т.е. сост. только из экзонов.у эукориотов гены прерывистые, т.е. сост. из экзонов и интронов. Перекрывающий ген – ген явл. частью др. гена, происходит наложение рамок считывания. При образовании зрелой и-РНК один экзон может соединиться с др. экзонам, образуется семейство, близких по строению и-РНК. Гены способны перемещаться - троспозоны. Ген и его копии и псевдогены образ семейство. 2 группы ДНК: структурные - кодируют белки и и-РНК; регуляторы – регулируют работу структурных генов. На эти 2 группы генов приходится от 15-98% всей ДНК, а остальная ДНК – избыточная, они копируют уже имеющиеся гены.

38.генная и клеточн инженерия. Генная инженерия — раздел биотехнологии, связанный с целенаправленным конструированием новых комбинаций генетического материала, способного размножаться в клетке и синтезировать определенный продукт. Генная инженерия решает следующие задачи: 1) получение генов путем их синтеза или выделения из клеток; 2) получение рекомбинантных молекул ДНК; З) клонирование генов или генетических структур; 4) введение в клетку генов или генетических структур и синтез чужеродного белка. Получёние генов. Два способа: химический и ферментативный. Химическим путем синтезировали ген аланиновой т - РНК дрожжей. ,однако ген аланиновой т - РНК при введении в клетку кишечной палочки не функционировал, т.к. он не имел промотора и терминальных кодонов, которые дают сигнал о завершении синтеза иРНК. Осуществили синтез гена супрессорной тирозиновой т – РНК - оказался работоспособным. Химико-ферментативный обнаружили фермент обратную транскриптазу. При помощи неё вирусы могут синтезировать ДНК, используя в качестве матрицы иРНК. Ферментативным синтезом - транскрибирование комплементарной нити ДНК (гена) на молекулах РНК в пробирке. Система для синтеза представляет собой раствор, в котором содержатся все четыре нуклеотида, входящих в состав ДНК, ионы магния, фермент обратная транскриптаза и и – РНК. Рестриктирующие эндонуклеазы (рестриктазы). Важным событием для развития генной инженерии было открытие в клетках бактерий ферментов, способных разрезать молекулу ДНК в строго определенных местах. Ферменты эти называются рестриктирующими эндонуклеазами или рестриктазами, а процесс «разрезания» молекулы ДНК называется рестрикцией. Палиндромом называется последовательность ДНК, которая считывается одинаково в обоих направлениях, начиная от 3’-конца каждой цепи. Рекомбинантная ДНК — это искусственно полученная молекула ДНК. Она имеет форму кольца, включает ген, составляющий объект генетических манипуляций, и так называемый вектор, обеспечивающий размножение рекомбинантной ДНК и синтез в клетке хозяина определенного продукта, кодируемого внесенным геном. Векторы должны обладать особенностями: 1) иметь свойства репликона; 2) содержать один или несколько маркирующих генов, чтобы по фенотипу можно было определить факт его передачи. Соединение вектора с фрагментом ДНК может производиться путями: при помощи липких концов, под действием эндонуклеаз рестрикции; дополнительного синтеза полинуклеотидных фрагментов каждой из цепей ДНК (поли-А и поли-Т); соединения тупых концов при помощи Т4-лягазы. Размножение в бактериях идентичных рекомбинантных ДНК называется клонирование. Каждый клон бактерий содержит свою рекомбинантную ДНК. Введение в клетку рекомбинантных молекул и синтез чужеродного белка. Чаще всего рекомбинантные молекулы вводятся в клетки бактерий методом трансформации. В последние годы уделяется много внимания созданию генно-инженерных вакцин. Получают антигены из рекомбинантных микроорганизмов или культур клеток, в которые введен определенный ген возбудителя болезни. Этим методом получен материал для вакцинации против гепатита В, гриппа А, малярии, ящура, бешенства и др. Штаммы бактерий, продуцирующие вещества, активные в организме человека и животных, могут быть использованы для промышленного производства лекарственных препаратов.

36. Клеточная инженерия. Получение моноклональных антител

Под клеточной инженерией понимают метод конструирования клеток нового типа на основе их культивирования гибридизации и реконструкции. Культура клеток — метод сохранения жизнеспособности клеток вне организма в искусственно созданных условиях жидкой или плотной питательных сред. Для культивирования могут быть использованы клетки различных органов, лимфоциты, фибробласты, эмбрионы, клетки почек животных и человека, раковые клетки человека и т. д. Культуры, приготовленные непосредственно из тканей организма, называются первичными. В большинстве случаев клетки первичной культуры можно перенести из культуральной чашки и использовать для получения вторичных культур, которые можно последовательно перевивать в течение недель и месяцев. Технология культивирования некоторых клеток животных настолько хорошо отработана, что может быть использована в производственных целях для получения различных продуктов. Они используются как медицинские препараты. Получение моноклональных антител. Введение антигена (бактерий, вирусов и т. д.) вызывает образование разнообразных антител против многих детерминант антигена. В 1975 получены моноклональные антитела с помощью гибридомной технологии. Моноклональные антитела — это иммуноглобулины, синтезируемые одним клоном клеток. Моноклональное антитело связывается только с одной антигенной детерминантой на молекуле антигена. Гибридомная технология - слияние с помощью полиэтиленгликоля лимфоцитов сёлезенки предварительно иммунизированных организмов определенным антигеном с раковыми клетками, способными к бесконечному делению. Отбирают клоны клеток, синтезирующие необходимые антитела. Гибридомы - бессмертные клоны клеток, синтезирующие моноклональные антитела. Получение и использование моноклональных антител — одно из существенных достижений современной иммунологии. С их помощью можно определить любое иммуногенное вещество. В медицине моноклональные антитела можно использовать для диагностики рака и определения локализации опухоли, для диагностики инфаркта миокарда. Для использования в терапии моноклональные антитела можно соединять с лекарством благодаря специфичности антител они доносят это вещество непосредственно к раковым клеткам или патогенным микроорганизмам, что позволяет значительно повысить эффективность лечения. Можно использовать моноклональные антитела для определения пола у крупного рогатого скота на предимплантационной стадии развития, а также для стандартизации методов типирования тканей при трансплантации органов, при изучении клеточных мембран, для построения антигенных карт вирусов, возбудителей болезней.

41.Понятия: мутация,. Классификация мутаций.

Мутация – стойкое изменение в ДНК и кариотипе особи. Мутагенез - процесс возникновения мутации. Мутаген – фактор, вызывающий мутацию. Мутант – осыбь, у которой мутация проявилась. Классификация: І. По возможности наследования 1. соматические, возник в кл тела и по наследству не передаётся, но в организме появляется клон мутантных кл, одна из причин рака. 2. генеративные в гаметах или в зиготе, передаются по наследству.II По влиянию на жизнеспособ. 1 суперлитальные или полезные – повышают жизнеспособность. 2 нейтральные – не влияют на жизнеспособность. 3 вредные – понижают, в том числе а) сублетальные – выживания от 50-100% б) полулетальные – не более 50% выживаемости. 4. летальные -100%смертельный исход.III По способности проявляться у гетерозигот. 1. доминантные – проявляются в первом поколении. 2. рецессивные – проявл-ся, когда рецессивный мутантный ген перейдёт в гомозиготное состояние. IV. По направлению мутирования. 1. прямые – от нормы к мутации. 2. обратные – от мутации к норме. V. По причинам возникновения. 1. спонтанные – возникают в естественных условиях. 2. индуцированные – получают искусственным путём. VI. По фенотипу. 1. морфологические – изменение внешнего и внутреннего строения. 2. физиологические - влияют на плодовитость, продуктивность, резистентность. 3. биохимические – на обмен веществ. 4. поведенческие – на поведение. VII. По характеру изменения генетического материала. 1. геномные или числовые. 2. хромосомные или структурные. 3. генные или точковые. 4. цитоплазматические.

31. Генетический код и его свойства

Это перевод последовательных нуклеотидов ДНК на последоват аминокислот в белке. 3 нуклеотида – триплет, кодирующий свою аминокислоту – кадон. Свойства: 1) универсален, т.е.единый для всех; 2) код триплетен; 3) избыточный, триплетов 64, аминокислот 20; 4) код не перекрывающийся, т.е.наложение триплетов друг на друга не бывает в норме; 5) 2 нуклеотида одинаковых – облигатные, а третий варьирует – факультативный; 6) из 64 триплетов 61 явл кадонами, а 3 не кодируют аминокислоту, это стоп сигналы – останавливают синтез белка; 7) последовательность нуклеотид ДНК отражает последовательность аминокислот в белке, но не наоборот.

44. Хромосомная мутация – изменение формы, размера хром-мы, порядка расположения генов в ней. Могут быть сбалансированными (нет утраты или избытка генетического материала, они не проявляются фенотипически) и несбалансированными. Виды: внутрихромосомная (дупликация – в рез-те неравного кроссинговера в гомологичных хром-мах происходит удвоение участка одной хром-мы из пары - выживание; фрагментация – разрыв хром-мы на куски – летальный; инверсия – переворот участка хром-мы на 180º - не влияет на жизнеспособность; нехватки- потеря участка хромосомы: а) делеции – выпадение внутреннего участка, б) дефишенции – потеря конца хром-м – более 2% летально) и межхромосомная – транслокация – перемещение участка из одной хром-мы в другую, ей негомологичную (а) если обмен взаимный – транслокация реципрокная,б) если не взаимный – транспозиция, в) если 2 одноплечие хром-мы сливаются в области центромера, образуют одну равноплечую, то это транслокация Робертсона – эмбриональная смертность).

45. Геномная мутация – изменение числа хром-м в кариотипе. Мутация – стойкое изменение в ДНК и кариотипе особи. 1) полиплоидия – изменение числа хром-м, кратное гаплоидному набору. n- гаплоиды, 3n – триплоиды. Использ-ся в растениеводстве особенно n, 3n. У растений это возможно, т.е. они могут размножаться вегетативно. У животных 100 % полиплоиды погибают на стадии эмбриона. Причины полиплоидии: а) нерасхождение всего набора хром-м в мейозе, б) ошибка при оплодотворении. 2) анэуплоидия – увеличение (уменьшение0 числа хром-м в кариотипе на 1-2. 2n+1 – трисомия (синдром Дауна). 2n+2 – тетросомия. 2n-1- моносомия (синдром Тернера). 2n-2 – нулисомия. Причина – нарушение расхождения по одной паре хром-м в анафазе I. Мозаицизм – часть клеток тела имеет ненормальный набор хром-м из-за нарушения митоза во время раннего дробления зиготы.