Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ротор.docx
Скачиваний:
52
Добавлен:
12.02.2015
Размер:
121.76 Кб
Скачать

Ротор в криволинейных координатах

Общий случай

Удобным общим выражение ротора, пригодным для произвольных криволинейных координат в трехмерном[6] пространстве является выражение с использованием тензора Леви-Чивиты:

Используя верхние и нижние индексы и правило суммирования Эйнштейна:

где - координатная запись тензора Леви-Чивиты, включая множитель - метрический тензор в представлении с верхними индексами, 

Это выражение при желании может быть также переписано, например, в виде:

итд.

В ортогональных криволинейных координатах

где Hi — коэффициенты Ламе.

Примеры

  • В этой главе будем использовать для единичных векторов по осям (прямоугольных) декартовых координат использовать обозначение 

Простой пример

Рассмотрим векторное поле F, зависящее от координат x и y так:

.

  • В отношении этого примера нетрудно заметить, что , гдеr - радиус-вектор, а , то есть полеF можно рассматривать как поле скоростей точек твёрдого тела, вращающегося с единичной по величине угловой скоростью, направленной в отрицательном направлении оси z (то есть по часовой стрелке, если смотреть "сверху" - против оси z). Интуитивно более или менее очевидно, что поле закручено по часовой стрелке. Если мы поместим колесо с лопастями в жидкость, текущую с такими скоростями (то есть вращающуюся как целое по часовой стрелке), в любое место, мы увидим, что оно начнет вращаться по направлению часовой стрелки. (Для определения направлений используем, как обычно, правило правой руки или правого винта).

  • z-компоненту поля F будем считать равной нулю. Однако если она ненулевая, но постоянная (или даже зависящая только от z) - результат для ротора, получаемый ниже, будет тем же.

Вычислим ротор:

Как и предположили, направление совпало с отрицательным направлением оси z. В данном случае ротор оказался константой, то есть поле оказалось однородным, не зависящим от координат (что естественно для вращения твёрдого тела). Что замечательно,

  • угловая скорость вращения жидкости, вычисленная из ротора и оказавшаяся равной точно , точно совпала с тем, что указано в параграфеФизическая интерпретация, то есть этот пример является хорошей иллюстрацией приведённого там факта. (Конечно же, вычисления, полностью повторяющие приведённые выше, но только для неединичной угловой скорости, дают тот же результат ).

Угловая скорость вращения в данном примере одна и та же в любой точке пространства (угол поворота пылинки, приклеенной к твердому телу не зависит от того места, где именно приклеить пылинку). График ротора F поэтому не слишком интересен:

Более сложный пример

Теперь рассмотрим несколько более сложное векторное поле[7]:

.

Мы можем не увидеть никакого вращения, но, посмотрев повнимательнее направо, мы видим большее поле в, например, точке x=4, чем в точке x=3. Если бы мы установили маленькое колесо с лопастями там, больший поток на правой стороне заставил бы колесо вращаться по часовой стрелке, что соответствует ввинчиванию в направлении -z. Если бы мы расположили колесо в левой части поля, больший поток на его левой стороне заставил бы колесо вращаться против часовой стрелки, что соответствует ввинчиванию в направлении +z. Проверим нашу догадку с помощью вычисления:

Действительно, ввинчивание происходит в направлении +z для отрицательных x и -z для положительных x, как и ожидалось. Так как этот ротор не одинаков в каждой точке, его график выглядит немного интереснее:

Можно заметить, что график этого ротора не зависит от y или z (как и должно быть) и направлен по -z для положительных x и в направлении +z для отрицательных x.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]