Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
e6456df6f6441c8fb31da98c0c3a63ce.pdf
Скачиваний:
7
Добавлен:
13.02.2015
Размер:
3.43 Mб
Скачать
n n
jxj res and jyj res 2 2
otherwise

Nanotechnology 24 (2013) 295702

G Cohen et al

bottom position. Meaning, A D cosd. / . To take into account the cantilever oscillations we sampled the position of the oscillating tip 25 times in one oscillation period:

 

2 d tan. / cos

n

3

y.n/

2

 

 

N

"z.n/# D

6 d

1

 

cos

2 n

7

 

6

 

 

N

7

 

4

 

 

 

5

where N D 25; n increases from 1 to 25, D 12 and d D 16:7 nm. Since this first mechanical resonance frequency is around 50 kHz, whereas the time constant of the Kelvin controller is 1 ms, the effective AM-PSF is calculated by minimizing the average electrostatic force on the probe rather than minimizing the force at each tip–sample distance [10].

The graphene CPD images were measured by FM-KPFM using a minimal tip–sample distance of 1 nm, therefore we bound minfzg D 1 nm in equation (A.4) to find the exact

position of the oscillating tip in time:

 

 

 

 

2

 

A cos

t

sin. /

3

y.t/

 

2

 

 

T0

"z.t/# D

61

C

A cos. /

1

 

cos

2 t

7

T0

 

6

 

 

7

 

4

 

 

 

 

5

where D 13 and A D 3–5 nm were used in the measurements. The effective FM-PSF was then calculated in the same manner as the AM-PSF, by minimizing the averaged force-gradient instead of the force at each tip–sample distance.

A.3. Convolution and deconvolution

Let PSF1 be the physical, continuous point spread function of the probe. The Kelvin voltage (DC voltage) on the probe satisfies:

VDC D VCPD ~ PSF1

 

D .VCPD Vsub C Vsub/ ~ PSF1:

(A.5)

Since sSamplePSF1 ds D 1 we obtain:

 

VDC Vsub D .VCPD Vsub/ ~ PSF1:

(A.6)

Let PSF be the discrete point spread function calculated by Matlab. PSF is cropped to a specific area:

PSF.x; y/

(

PSF1.x; y/;

D

0;

(A.7)

where n is the number of simulated surface points in x- and y-axes and res is the scan resolution. If there are no features outside the scan area we can approximate .VCPD.x; y/ Vsub/ 0 for x and y outside the scan area. Since PSF1.x; y/ values for jxj; jyj > n2 res are significantly smaller than the values close to the origin, we estimate:

.VCPD Vsub/ ~ PSF .VCPD Vsub/ ~ PSF1: (A.8)

And from equation (A.6) we get:

VDC Vsub D .VCPD Vsub/ ~ PSF:

(A.9)

Since deconvolution in Matlab requires a normalized PSF, we

P divide and multiply the above expression by PSF:

VDC Vsub

|{z }

Deconvolution input

D h.VCPD Vsub/ XPSF i ~

 

PSF

:

(A.10)

 

 

 

 

 

 

PSF

 

 

|

 

{z

 

}

 

P

 

 

 

Deconvolution output

 

 

 

 

References

[1]Girard P 2001 Electrostatic force microscopy: principles and some applications to semiconductors Nanotechnology

12 485

[2]Weaver J M R and Abraham D W 1991 High-resolution atomic force microscopy potentiometry J. Vac. Sci. Technol. B 9 1559–61

[3]Ziegler D and Stemmer A 2011 Force gradient sensitive detection in lift-mode Kelvin probe force microscopy

Nanotechnology 22 075501

[4]Loppacher C et al 2005 FM demodulated Kelvin probe force microscopy for surface photovoltage tracking

Nanotechnology 16 S1

[5]Sommerhalter C, Glatzel T, Matthes T W, Jager¨-Waldau A and Lux-Steiner M C 2000 Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces Appl. Surf. Sci. 157 263–8

[6]Charrier D S H, Kemerink M, Smalbrugge B E, de Vries T and Janssen R A J 2008 Real versus measured surface potentials in scanning Kelvin probe microscopy ACS Nano 2 622–6

[7]Jacobs H O, Leuchtmann P, Homan O J and Stemmer A 1998 Resolution and contrast in Kelvin probe force microscopy

J. Appl. Phys. 84 1168–73

[8]Gil A, Colchero J, Gomez´-Herrero J and Baro´ A M 2003 Electrostatic force gradient signal: resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy Nanotechnology 14 332

[9]Machleidt T, Sparrer E, Kapusi D and Franke K-H 2009 Deconvolution of Kelvin probe force microscopy measurements—methodology and application Meas. Sci. Technol. 20 084017

[10]Elias G, Glatzel T, Meyer E, Schwarzman A, Boag A and Rosenwaks Y 2011 The role of the cantilever in Kelvin probe force microscopy measurements Beilstein J.

Nanotechnol. 2 252–60

[11]Nonnenmacher M, Oboyle M P and Wickramasinghe H K 1991 Kelvin probe force microscopy Appl. Phys. Lett. 58 2921–3

[12]Kitamura S and Iwatsuki M 1998 High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope Appl. Phys. Lett.

72 3154–6

[13]Girard P, Ramonda M and Saluel D 2002 Electrical contrast observations and voltage measurements by Kelvin probe force gradient microscopy J. Vac. Sci. Technol. B

20 1348–55

[14]Strassburg E 2005 A fast algorithm to restore the surface potential image from atomic force microscopy measurements MSc Tel Aviv University

[15]Strassburg E, Boag A and Rosenwaks Y 2005 Reconstruction of electrostatic force microscopy images Rev. Sci. Instrum. 76 083705

[16]Gonzalez R C and Woods R E 2006 Digital Image Processing 3rd edn (Englewood Cliffs, NJ: Prentice-Hall)

[17]Machleidt T, Sparrer E, Kubertschak T, Nestler R and

Franke K-H 2009 Kelvin probe force microscopy: measurement data reconstruction Proc. SPIE 7378 73781C

12

Nanotechnology 24 (2013) 295702

G Cohen et al

[18]Elias G 2011 Modeling and simulations of Kelvin probe force microscopy MSc Tel Aviv University

[19]Zerweck U, Loppacher C, Otto T, Grafstrom S and Eng L M 2005 Accuracy and resolution limits of Kelvin probe force microscopy Phys. Rev. B 71 125424

[20]Rosenwaks Y and Shikler R 2005 Nanoscale electronic measurements of semiconductors using Kelvin probe force microscopy Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials ed P Vilarinho, Y Rosenwaks and

A Kingon (Netherlands: Springer) pp 119–51

[21]Baier R, Leendertz C, Lux-Steiner M C and Sadewasser S 2012 Toward quantitative Kelvin probe force microscopy of nanoscale potential distributions Phys. Rev. B 85 165436

[22]Sadewasser S, Leendertz C, Streicher F and Lux-Steiner M C 2009 The influence of surface topography on Kelvin probe force microscopy Nanotechnology 20 505503

[23]Hudlet S, Saint Jean M, Roulet B, Berger J and Guthmann C 1995 Electrostatic forces between metallic tip and semiconductor surfaces J. Appl. Phys. 77 3308–14

[24]Luther J M, Zheng H M, Sadtler B and Alivisatos A P 2009 Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions J. Am. Chem. Soc. 131 16851–7

[25]Nanayakkara S U et al 2013 Built-in potential and charge distribution within single heterostructured nanorods measured by scanning Kelvin probe microscopy Nano Lett. 13 1278–84

[26]Held C, Seyller T and Bennewitz R 2012 Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001) Beilstein J. Nanotechnol. 3 179–85

[27]Young D and Felgar R P 1949 Tables of Characteristic Functions Representing Normal Modes of Vibration of a Beam (The University of Texas Engineering Research Series) vol 44

13