Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы курса КСЕ 2012.docx
Скачиваний:
115
Добавлен:
08.03.2015
Размер:
15.85 Mб
Скачать

Тема 2.3. Общая теория относительности

O Основные понятия

Общая теория относительности (ОТО). Принцип эквивалентности. Взаимосвязь материи и пространства-времени. Соответствие ОТО и классической механики. Эмпирические доказательства ОТО.

& Краткое содержание

Общая теория относительности (ОТО):распространение принципа относительности на неинерциальные системы отсчета.

ОТО - это физическая теория, в основе которой лежит ясный физический принцип, твердо установленный экспериментальный факт: все тела падают в поле тяжести с одинаковым ускорением –принцип эквивалентности гравитационной («тяжелой») массы тела— входящей в формулу закона всемирного тяготения,и «инертной»— всем известной по законам динамики Ньютона.

Принцип эквивалентности: ускоренное движение неотличимо никакими измерениями от покоя в гравитационном поле

Взаимосвязь материи и пространства-времени: материальные тела изменяют геометрию пространства-времени, которая определяет характер движения материальных тел

Многообразие пространственно-временных отношений, установленных Эйнштейном, проявляется на всех структурных уровнях материи как в классической, так и в неклассической физике.

Соответствие ОТО и классической механики: их предсказания совпадают в слабых гравитационных полях

Эмпирические доказательства ОТО:

  • отклонение световых лучей вблизи Солнца

  • замедление времени в гравитационном поле

  • смещение перигелиев планетных орбит

Тема 2.4. Принципы симметрии, законы сохранения

O Основные понятия

Понятие симметрии в естествознании: инвариантность относительно тех или иных преобразований

Нарушенные (неполные симметрии)

Эволюция как цепочка нарушений симметрии

Простейшие симметрии:

  • - однородность (одинаковые свойства во всех точках)

  • - изотропность (одинаковые свойства во всех направлениях)

Симметрии пространства и времени: Анизотропность времени

Теорема Нётер как общее утверждение о взаимосвязи симметрий с законами сохранения

Закон сохранения энергии как следствие однородности времени

Закон сохранения импульса (количества поступательного движения) как следствие однородности пространства

Закон сохранения момента импульса (количества вращательного движения) как следствие изотропности пространства

& Краткое содержание

1. Понятие симметрии в естествознании

К слову «симметрия» мы привыкаем с детства, и кажется, что в этом ясном понятии ничего загадочного быть не может. Симметрию мы встречаем везде - в природе, технике, искусстве, науке. Принципы симметрии играют важную роль в физике, математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Симметрия проникла в мир математических законов, физических, биологических, литературных и стала там полновластной хозяйкой.

Математически строгое представление о симметрии сформировалось в 19 веке.

Одним из самых важных открытий современного естествознания является тот факт, что все многообразие окружающего нас мира связано с тем или иным нарушением определенных видов симметрий.

Симметрия (греч.соразмерность) – неизменность при каких-либо преобразованиях / инвариантность относительно тех или иных преобразований.

Инвариантность– свойство какого-либо объекта не изменяться при изменении условий, в которых он существует.

Общее понятие симметрии характеризует особую структуру организации любых систем, в которой сохраняются (остаются инвариантными) определенные признаки при выполнении определенных преобразований. Признаки, которые будут сохраняться, могут быть геометрическими, физическими, биологическими, химическими, информационными и т.д.

В трактовке по Г.Вейлю, симметричнымназывается такой объект, который можно как-то изменить, получая в результате тоже, с чего начали (т.е. такой предмет, с которым можно проделать какую-то операцию, получив в итоге первоначальное состояние).

В широком смысле,симметрия– это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого.

Противоположным понятием является понятие асимметрии– это понятие, которое отражает существующее в объективном мире нарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности, связанное с изменением развитием и организационной перестройкой. Таким образом, асимметрия может рассматриваться как источник развития, эволюции, образования нового.

Пользуясь симметрией природы, физики делали порой весьма смелые предположения. И они всегда оправдывались. Например, известный ученый Поль Дирак решил, что электрон должен иметь «антипода». В самом деле, мир электрически нейтрален. Положительных зарядов в нем столько же, сколько и отрицательных. Но отрицательный электрон — крохотулька, а положительный протон невероятно массивен. Это несправедливо, не симметрично, решил Дирак и высказал предположение, что должен существовать точно такой же по массе, как и электрон, но с зарядом противоположного знака «позитрон». И точно. Прошло четыре года, и экспериментаторы поймали такую частицу.

Недавно получено антивещество, и астрономов уже озадачивает тот факт, что в недрах космоса пока не обнаружены «антиземли», «антизвезды» и даже «антигалактики». Но надежды обрести симметрию в большом не потеряны.

В общем случае то или иное преобразование симметрии сводится к трем следующим преобразованиям или их комбинациям.

Основные типы преобразований симметрии(простейшие преобразования):

  • зеркальная симметрия –симметрия относительно плоскости, когда любой точке, расположенной по одну сторону плоскости, всегда будет соответствовать точка, расположенная по другую сторону плоскости; объект при операцииотраженияпереходит в себя;каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой; симметрия левого и правого – двусторонняя симметрия.

например, если стать в центре здания и слева от вас окажется то же количество этажей, колонн, окон, что и справа, значит здание симметрично. Если бы можно было перегнуть его по центральной оси, то обе половинки дома совпали бы при наложении. Такая симметрия получила название зеркальной.

Двусторонняя симметрия в неживой природе не имеет преобладающего значения, но зато очень богато представлена в живой природе. Она характерна для внешнего строения тела человека, млекопитающих, птиц, пресмыкающихся, земноводных, рыб, насекомых, а также многих растений. Этот вид симметрии весьма популярен в животном царстве, сам человек скроен по ее канонам. Человеческое тело обладает зеркальной симметрией относительно вертикальной оси. Бабочка симметрична по отношению к отражению в воображаемом зеркале, разделяющем бабочку пополам вдоль ее туловища.

  • поворотная симметрия– это симметрия относительно точки (центральная симметрия (переход частей в новое положение и образование исходной фигуры происходит при повороте этой фигуры на определенный угол вокруг точки, которая обычно называется центром поворота).

например, в мире растений в ходу другая симметрия — поворотная. Возьмите в руку цветок ромашки. Совмещение разных частей цветка происходит, если их повернуть вокруг стебелька.

  • переносная (трансляционная) симметрия – части целой формы организованы таким образом, что каждая следующая повторяет предыдущую и отстоит от нее на определенный интервал в определенном направлении.

например, полимерные цепные молекулы белков (объекты, вытянутые вдоль какого-либо направления), симметричны по отношению к переносу (смещению) вдоль него на некоторое расстояние).

Выделяют две формы симметрии(и асимметрии):

  • геометрическая(внешние симметрии) – это та симметрия, которую можно непосредственно видеть;

  • динамическая(внутренние) – симметрии, выражающие свойства физических взаимодействий; лежат в основе ЕНКМ, рассматривается в физических законах и законах природы (физическая симметрия).

если электроны одного атома заменить электронами другого атома, то такая замена не приведет к каким-либо изменениям.

Законам симметрии подчиняются все формы на свете. Даже «вечно свободные» облака обладают симметрией, хотя и искаженной. Замирая на голубом небе, они напоминают медленно движущихся в морской воде медуз, явно тяготея к поворотной симметрии, а потом, гонимые поднявшимся ветерком, меняют симметрию на зеркальную. Еще одним интересным проявлением симметрии жизненных процессов являются биологические ритмы (биоритмы), циклические колебания биологических процессов и их характеристик (сокращения сердца, дыхание, колебания интенсивности деления клеток, обмена веществ, двигательной активности, численности растений и животных), зачастую связанные с приспособлением организмов к геофизическим циклам. Исследованием биоритмов занимается особая наука - хронобиология.

Чем доказывается сама симметрия, есть ли у нее под ногами еще более фундаментальная первооснова? Пока неизвестно. Довольно загадочным также является тот факт, что в этом симметричном мире несимметричность не только уцелела, но и продолжает играть весьма важную роль.