Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы манин.docx
Скачиваний:
111
Добавлен:
08.03.2015
Размер:
3.33 Mб
Скачать

14.Трёхфазные синхронные двигатели.

3.1 Назначение:

Достоинства:

1) возможность компенсации реактивной мощности (они могут вырабатывать реактивную мощность); 2) постоянство частоты вращения.

Недостатки:

1) необходимость дополнительного источника постоянного тока для питания обмотки возбуждения; 2) сложность пуска; 3) сложность конструкции (по сравнению с АД).

Синхронные двигатели (СД) применяются для нерегулируемых электроприводов средней и большой мощности (до 20000 кВт), работающих с редкими пусками в длительном режиме (компенсаторы, мощные центробежные насосы), используют синхронные двигатели (СД), имеющие большой КПД и .

СД малой мощности в приводах, не требующих постоянства частоты вращения применять нецелесообразно, так как эксплуатационные преимущества не окупают капитальных затрат.

Устройство:

(Синхронные – т.е. частота вращения ротора равна частоте вращения магнитного поля)

Статор синхрон. двигателя выполняется по аналогии со статором асинхронного двигателя.

Ротор представляет собой закреплённый на валу электромагнит постоянного тока, либо( в двигателе малой мощности) постоянный магнит.

Обмотка ротора, называемая обмоткой возбуждения, в работающем двигателе питается от источника постоянного тока через 2 щётки и 2 контактных кольца, жёстоко закрепленных на валу и электрически соединённых с обмоткой возбуждения (по аналогии с электромагнитной муфтой).

Принцип действия:

Исходное состояние: статор неподвижно закреплён, вал сочленён с исполнительным органом машины. Обмотка возбуждения подключена к источнику постоянного тока. Обмотка статора, соединённая треугольником или звездой, подключена к трёхфазной сети.

Обмотка возбуждения создает магнитное поле, магнитный поток которого . Трёхфазная симметричная система токов обмотки статора создаёт круговое вращающееся магнитное поле, частота вращения которого

где р – число пар полюсов магнитного поля и ротора.

Магнитное поле ротора взаимодействует с магнитным полем статора (притяжение разноименных полюсов), результатом этого взаимодействия является электромагнитный момент, создаваемый исполнительным органом рабочей машины.

Вращающееся магнитное поле индуцирует в каждой фазе обмотки статора синусоидальную ЭДС, действующее значение которой

где - постоянная величина;

n – частота вращения ротора;

- магнитный поток.

Ток в обмотке статора создаётся совместным действием напряжения трёхфазной сети и противо ЭДС обмотки статора. Ротор вращается в том же направлении что и магнитное поле статора с частотой (т.е. синхронный).

Билет №13. Способы управления скоростью вращения электрических машин.

Реверсирование, регулирование частоты вращения:

Для реверсирования двигателя достаточно изменить направление либо тока якоря, либо направление тока возбуждения. Для этого необходимо провода, присоединённые к обмотке якоря, либо обмотки возбуждения поменять местами. Способы регулирования частоты вращения «видны» из уравнений скоростной и механической характеристик.

1) уменьшение частоты вращения за счёт уменьшения напряжения источника, питающего якорь двигателя. Очевидно, что при изменении напряжения изменяется частота вращения х/х, а наклон характеристик остаётся без изменений.

закон регулирования:

M=const

IВ=const

IЯ= const

Р= Var

2) уменьшение частоты вращения за счёт введения в цепь якоря регулировочного реостата

При этом способе регулирования частота вращения холостого хода неизменна, а изменяется наклон.

Закон изменения:

M=const;

IВ=const;

IЯ= const;

Р= Var

При 1 и 2 двигатель остановится

3) увеличение частоты вращения за счёт ослабления магнитного поля (уменьшение магнитного потока за счёт уменьшения тока возбуждения). Т.к. ток якоря зависит от магнитного потока , то чтобы в процессе регулирования не перегружать двигатель током, устанавливают следующий закон регулирования:

M = var; IВ = var;

IЯ = const; Р= const

1 – Ф” < Ф’

2 – Ф’< Фном

3 – Ф = Фном

Торможение двигателя:

В практике применяют 3 способа электромагнитного торможении двигателя:

  1. генераторное рекуперативное торможение

Уменьшают Uя так чтобы оно стало меньше ЭДС в результате изменяется направление тока якоря, изменяется направление эл магн момента (он становится тормозным) и происходит торможение якоря т.е. плавное уменьшение частоты вращения . Двигатель работает в генераторном режиме преобразуя кинетическую энергию якоря в кинетическую и возвращая её источнику питания. ЭДС сравняется с напряжением (реж х х) и далее машина вновь переходит в двигательный режим. В новом установившемся режиме якорь вращается медленее, чем в предыдущем установившемся режиме.

  1. генераторное динамическое торможение

Обмотку якоря отключают от источника питания и замыкают на тормозной резистор в результате изменяется направление тока якоря ( он определяется только ЭДС и совпадает с ней по направлению). Изменяется направление эл магн момента двиг переходит в генераторный режим и тормозится вплоть до остановки. Изменением сопротивления тормозного резистора можно изменять время торможения.

  1. торможение противовключением (изменяют напряжение и Iя, в результате изменения направления электромагнитного момента и двигатель тормозится, если в момент остановки якоря двигатель не будет отключен, то якорь после это начнёт вращаться в противоположную сторону - реверсирование)