Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2_modul_kruglikov

.pdf
Скачиваний:
7
Добавлен:
13.03.2015
Размер:
1.29 Mб
Скачать

Рис.1

На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:

(1)

(2)

где КМ - коэффициент, зависящий от конструктивных параметров машины; Ф - магнитный поток одного полюса; IЯ - ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:

(3)

где rЯ - сопротивление якоря.

Следствием уменьшения тока IЯ является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.

14 ВОПРОС. РЕАКЦИЯ ЯКОРЯ МАШИНЫ ПОСТОЯННОГО ТОКА

Смещение магнитного поля генератора. Под реакцией якоря понимают явление воздействия магнитного поля, создаваемого током якоря, на магнитное поле главных полюсов.

При холостом ходе генератора магнитное поле машины образовано только главными полюсами (рис. 1.10, а). Оно симметрично относительно оси полюсов и его ось совпадает с осью полюсов. Когда генератор работает с нагрузкой, по обмотке якоря протекает ток, который создает свое магнитное поле (рис. 1.10.б), называемое полем якоря. Ось магнитного поля якоря совпадает с линией, соединяющей щетки, т.е. с геометрической нейтралью, и перпендикулярна оси главных полюсов. При вращении якоря распределение тока в проводниках якоря остается неизменным и поле якоря — неподвижным в пространстве. Индукция этого поля пропорциональна току в якоре.

Рис. 1.10

При работе генератора с нагрузкой поле якоря накладывается на поле полюсов. В генераторе создаётся результирующее поле (рис 1.10, В), повернутое по направлению вращения якоря на некоторый угол у относительно поля главных полюсов. Физическая нейтральная линия оказывается повернутой на тот же угол относительно геометрической нейтральной линии. При изменении нагрузки индукция поля

якоря изменяется, изменяется и угол .

Результаты смещения магнитного поля. Смещение физической нейтральной линии вызывает нежелательные последствия, приводящие к ухудшению работы генератора: Ø уменьшается ЭДС, так как щетки оказываются установленными в точках, между которыми разность потенциалов не максимальная;

Øпереключение проводников обмотки якоря из одной параллельной ветви в другую происходит не на физической нейтрали, а на геометрической, где расположены щетки и где результирующее поле В′ ≠ 0, что, как будет показано в следующем параграфе, приводит к искрению щеток и обгоранию коллекторных пластин;

Øиндукция магнитного поля под полюсами распределяется неравномерно; под краем полюса, на который якорь набегает, она уменьшается, а под краем полюса, с которого сбегает, – увеличивается (штриховая линия на рис. 1.7) настолько, что может создаться насыщение сбегающего края полюса и зубцов якоря. В результате появится продольная размагничивающая составляющая поля якоря, направленная против поля главных полюсов, что также приведет к уменьшению ЭДС якоря. Кроме того, в части проводников, находящихся в зоне магнитного насыщения, наводится значительная ЭДС, которая может вызвать пробой изоляции между соседними коллекторными пластинами и повышенное искрение на коллекторе.

Смещение магнитного поля двигателя. У двигателя постоянного тока при том же направлении тока в якоре направление вращения якоря по сравнению с генератором противоположное (штриховая стрелка на рис. 1.10, в), а картина распределения полей одинаковая. Результирующее поле и физическая нейтральная линия оказываются по-

вернутыми на угол против направления вращения якоря.

Это приводит к нежелательным последствиям: уменьшается вращающий момент двигателя, так как часть проводников параллельной ветви, расположенных между щеткой и физической нейтралью, будет находиться в зоне полюса противоположной полярности – эта часть проводников будет создавать тормозной момент.

Как и у генератора, возможно искрение щеток и обгорание коллектора, а также появление продольного размагничивающего поля.

Способы уменьшения влияния реакции якоря. Наиболее действенным и распространенным средством уменьшения влияния реакции якоря на работу машины является применение дополнительных полюсов. Дополнительные полюсы устанавливаются на геометрической нейтральной линии между главными полюсами (рис. 1.11).

Их обмотка включается последовательно с обмоткой якоря и намотана так, что ее магнитное поле направлено против магнитного поля якоря. В зоне геометрической нейтральной линии создаются условия, благоприятные для безыскровой работы щеток (более подробно этот вопрос рассмотрен в следующем параграфе). Дополнительные полюсы выполняют свои функции во всех режимах работы машины: при изменении нагрузки одновременно изменяются ток и поле якоря, ток и поле дополнительных, полюсов; при переходе машины в режим двигателя одновременно изменяется направление токаи поля якоря и направление тока и поля дополнительных полюсов.

Для выравнивания индукции под полюсами в быстроходных машинах большой мощности (свыше 80 кВт на один полюс) применяют компенсационную обмотку, которую закладывают в специальные пазы в полюсных наконечниках (рис. 1.12).

Компенсационная обмотка включается последовательно с обмоткой якоря и обмоткой дополнительных полюсов. Магнитное поле компенсационной обмотки всегда направлено навстречу магнитному полю якоря и таким образом оно компенсирует поле якоря в зоне главных полюсов.

В машинах малой мощности (до нескольких сотен ватт) вместо дополнительных полюсов применяют сдвиг щеток с геометрической нейтральной линии.

15 ВОПРОС. ОБМОТКИ ЯКОРЯ МАШИН ПОСТОЯННОГО ТОКА

Обмотка якоря машины постоянного тока представляет собой замкнутую систему изолированных проводников, определенным образом уложенных в пазы сердечника якоря и присоединенных к коллектору. К обмотке якоря предъявляются ряд требований. Она должна обеспечить получение необходимой ЭДС, прохождения тока номинальной величины и безыскровую работу щеточного контакта. При этом она должна иметь достаточную электрическую, термическую и механическую прочность, обеспечивать возможно меньший расход материалов, максимальное значение КПД.

Обмотка якоря состоит из отдельных элементов–секций. Секция – это часть обмотки, содержащая один или несколько витков и присоединенная к двум коллекторным пластинам. Несколько секций скрепленных между собой для удобства укладки в пазы якоря образуют катушку. Секции в виде катушек являются основным конструктивным элементом при образовании якорной обмотки. Они укладываются в пазы в два слоя так чтобы левые стороны секций лежали в верхней части паза, а правые – в нижней. Такая обмотка носит название двухслойной (рисунок 1.11).

Рисунок 1.11

Части секций, лежащие в пазу, называются активными сторонами секции, они находятся в магнитном поле главных полюсов и при вращении якоря в них индуктируется ЭДС. Части секции, находящиеся вне пазов, называются лобовыми частями. Они находятся вне основного магнитного потока и ЭДС в них не индуктируется.

Верхняя сторона одной секции и нижняя сторона другой, уложенные в одном пазу, образуют так называемый элементарный паз (обозначается zэ). В реальном пазу может располагаться несколько элементарных пазов, их число равно числу секций в катушке. На рисунке 1.12, а показан разрез элементарного паза и разрез паза (рисунок 1.12,б), который имеет Us=2 элементарных паза.

Так как секция имеет два активные стороны, то каждой секции в обмотке соответствуют один элементарный паз. Концы секции присоединяются к коллекторным пластинам, при этом к каждой пластине присоединяют конец одной секции и начало следующей, в результате чего все секции соединяются последовательно и на каждую секцию приходится одна коллекторная пластина (рисунок 1.13).

Чтобы ЭДС, индуктируемые в активных сторонах секции, складывались и величина суммарной ЭДС секции при этом была наибольшей, необходимо секцию располагать в пазах сердечника так, чтобы ширина ее была равна или незначительно отличалась от полюсного деления τ. При этом с секцией будет сцепляться полный поток полюсов и ЭДС в ней будет достирать максимального значения. Для характеристики обмотки необходимо знать, как расположены в магнитном поле ее секции и как соединены они между собой. Это указывается на развернутой схеме обмотки. На этой схеме цилиндрические поверхности якоря и коллектора, разрезанные вдоль оси машины в любом месте, развертывают на плоскость и представляют прямоугольниками. Диаметр коллектора условно принимается равным диаметру якоря. Пазы якоря и все соединения проводников изображают отрезками прямых линий. Секции для простоты изображаются всегда одновитковыми (Wc =1). Активные стороны секций, находящиеся в нижнем слое паза,

черчивают пунктиром. Для расчета, составлений схем и монтажа обмотки испопользуются понятия шагов обмотки. Расстояние между двумя активными сторонами секции, определяющие ее ширину (рисунок 1.14), называется первым частичным шагом обмотки y1. Расстояние между правой активной стороной секции и левой активной стороной последующей секции называется вторичным частичным шагом обмотки y2.

Рисунок 1.14

Расстояние между началами двух последовательно соединенных секций называется результирующим шагом обмотки y. Шаги y1, y2, y измеряются обычно числом элементарных пазов. Расстояние между коллекторными пластинами, к которым присоединяются начало и конец секции, измеренное числом коллекторных пластин, называется шагом обмотки по коллектору yк. Так как начало следующей секции присоединяется к концу предыдущей, то yк равен числу коллекторных делений между началом одной секции и началом следующей. По якорю это соответствует результирующему шагу y. Таким образом, ход обмотки по коллектору соответствует ходу обмотки по якорю. Это обеспечивает выполнение симметричной обмотки и справедливо для всех типов обмотки якоря.

По внешнему очертанию контуров, образуемых последовательно соединенными секциями, различают петлевые, волновые и комбинированные.

МОДУЛЬ 2 ВОПРОС 16 ПРИНЦИПЫ РЕГУЛИРОВАНИЯ ЧАСТОТЫ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ

Способы регулирования частоты вращения. Частота вращения двигателя постоянного тока

(8.107) п = [U - IаRа + Rдо6 )]/(сеФ).

Следовательно, ее можно регулировать тремя способами: 1) включением добавочного реостатаRдоб в цепь обмотки якоря; 2) изменением магнитного потока Ф; 3) изменением питающего напряжения U. На примере двигателя с параллельным возбуждением рассмотрим принципиальные особенности, свойственные этим способам регулирования.

Включение реостата в цепь якоря. При включении реостата в цепь якоря частота вращения с ростом нагрузки уменьшается более резко, чем при работе двигателя без реостата: (8.108)

n = U - Ia(∑Ra + Rдоб )

=

U

-

Ia(∑Ra + Rдоб )

= n0 - n.

ceФ

ceФ

ceФ

 

 

 

Это показано на рис. 8.66, где приведены скоростные и механические характеристики двигателя с параллельным возбуждением: 1 — естественная (при Rдоб = 0); 2 — реостатная (приRдоб > 0). Частоты вращения

при холостом ходе для обеих характеристик равны, значения An(уменьшение частоты вращения при нагрузке) различны. При одном и том же токе якоря nест nреост = ΣRa /(ΣRa + Rдоб ). Чем больше добавочное сопротивление Rдоб , тем круче с увеличением нагрузки падает частота вращения.

Механические характеристики n = f(M) двигателя с параллельным возбуждением можно получить из скоростных характеристик n = f(Ia) путем изменения масштаба по оси абсцисс, так как для двигателя этого типа М = сМФIa = cIa (момент пропорционален току якоря).

Основным недостатком данного метода регулирования является возникновение больших потерь энергии в реостате (особенно при низких частотах вращения), что видно из соотношения

(8.109)

п/п0 = IaRa + Rдоб)/U = Ia2Ra + Rдоб)/(UIa) = Рэл /Р1,

где Рэл — электрические потери в цепи якоря; Р1 — мощность, подведенная к якорю.

Рис. 8.66. Скоростные и механические характеристики двигателя с параллельным возбуждением при регулировании частоты вращения путем включения реостата в цепь якоря

Решая уравнение (8.109) относительно Рэл , получаем

(8.110)

Рэл = Р1 п/п0 = Р1 (п0 - п)/п0,

т.е. с уменьшением частоты вращения якоря потери линейно возрастают.

Очевидно, что данный способ позволяет только уменьшать частоту вращения (по сравнению с частотой при естественной характеристике). Иногда существенным является то обстоятельство, что при включении в цепь якоря значительного сопротивления характеристики двигателя становятся крутопадающими (мягкими), вследствие чего небольшие изменения нагрузочного момента приводят к большим изменениям частоты вращения.

Изменение магнитного потока. Чтобы изменить магнитный поток, необходимо регулировать ток возбуждения двигателя. При различных магнитных потоках Ф1 и Ф2 частота вращения определяется формулами

(8.111)

 

U - Ia∑Ra

 

 

U

 

Ia ∑Ra

}

n1 =

=

-

 

= n01 - n1.

 

 

 

 

 

 

 

 

ceФ1

 

 

 

ceФ1

 

ceФ1

 

 

 

 

U

-

 

 

U

 

 

Ia ∑Ra = n02 -

n2 = Ia∑Ra

=

 

-

 

 

 

 

 

 

 

n2.

 

 

ceФ2

 

 

 

 

ceФ2

 

 

ceФ2

 

 

 

 

 

 

 

 

 

 

 

В двигателе с параллельным возбуждением, например, частота вращения при холостом ходе и падение частоты вращения изменяются обратно пропорционально изменению магнитного потока:

(8.112)

п02/п01 = п2п1 = Ф12.

Таким образом, скоростные характеристики 1 и 2 двигателя при различных магнитных потоках Ф1 и Ф2 не являются параллельными (рис. 8.67,а). Эти характеристики пересекаются в точке Апри частоте вращения, равной нулю, так как в данном случае ток Iак не зависит от потока:

(8.113)

Iак = URa

и определяется значениями напряжения и сопротивления цепи якоря. Значение тока Iак при n = 0 называют током короткого замыкания.

Механические характеристики для двигателя с параллельным возбуждением строят на основании следующих соображений. Каждая из механических характеристик является практически линейной (если пренебречь реакцией якоря) и может быть построена по двум точкам: точке холостого хода, в которой момент равен нулю, и точке короткого замыкания, в которой момент максимален.

Рис. 8.67. Скоростные и механические характеристики двигателя с параллельным возбуждением при регулировании частоты вращения путем изменения магнитного потока

Сравнивая моменты при коротком замыкании, соответствующие различным значениям магнитного потока, получаем

(8.114)

Мк1/Мк2 = сМФ1Iак /(сМФ2Iак) = Ф12.

Таким образом, с уменьшением магнитного потока частота вращения при холостом ходе возрастает, а момент при коротком замыкании снижается. Следовательно, механические характеристики, построенные при различных значениях магнитного потока, пересекаются при некотором значении момента Мкр и частоте вращения, меньшей частоты вращения при холостом ходе, но большей нуля (рис. 8.67, б). Из рассмотрения механических характеристик видно, что при значениях нагрузочного момента, меньших Мкр , уменьшение потока ведет к увеличению частоты вращения (см. точки С1 и С2 при нагрузочном моменте Mн1). При значениях нагрузочного момента, больших Мкр , уменьшение потока приводит к уменьшению частоты вращения (см. точки С'1 и С'2 при нагрузочном моменте Mн2).

В двигателях параллельного возбуждения средней и большой мощности уменьшение потока используют для повышения частоты вращения (рис. 8.68,а). В микродвигателях, наоборот, магнитный поток уменьшают для снижения частоты вращения.

Аналогично располагаются и механические характеристики у двигателей с последовательным возбуждением; в двигателях большой и средней мощности при уменьшении магнитного потока частота вращения возрастает рис. 8.68,б).

Уменьшение магнитного потока в двигателях последовательного возбуждения осуществляют путем включения регулировочного реостата Rp.в параллельно обмотке возбуждения ОВ (рис. 8.69), вследствие чего ток возбуждения

(8.115)

Iв = Iа Rp.в /(Rв + Rp.в ) = βIа ,

где Rp.в — сопротивление регулировочного реостата, включенного параллельно обмотке возбуждения; β = Iв/Iа коэффициент регулирования возбуждения.

Рис. 8.68. Механические характеристики двигателей: 1 — при нормальном возбуждении; 2 — при уменьшении магнитного потока

применяют на практике. Однако при этом регулирование частоно nmax/nmin = 2 ÷ 5. Нижний предел nmin ограничивается насымагнитный поток. Верхний предел nmax определяется условиями глубоком ослаблении возбуждения резко увеличивается исканикновения искрения на коллекторе и появления кругового ждения, должны иметь компенсационную обмотку и понижен-
пряжения от U1 до U2 частоты вращения определяются соответ-
ся пропорционально изменению напряжения, т. при Мн = const остается неизменным: n1 = n2 = const. В связи бой семейство параллельных прямых 1, 2 и 3 (рис. 8.70, а). Меабсцисс, так как момент пропорционален току якоря.

При включении реостата Rp.в параллельно обмотке возбуждения требуемое распределение тока Iа между обмоткой и реостатом обеспечивается только при стационарном режиме. При переходных процессах, когда токиIа и Iв изменяются, в обмотке возбуждения возникает значительная ЭДС самоиндукции, под действием которой ток Iв уменьшается по сравнению с его значением при стационарном режиме, а ток Iр.в возрастает, т. е. происходит значительное ослабление возбуждения. Наиболее опасен этот режим для двигателей электрифицированного транспорта (электровозов, электропоездов, трамваев, троллейбусов). При отключении двигателя от сети и последующем включении (при отрыве токоприемника от контактного провода) в первый момент почти весь ток Iа идет по реостату Rp.в , a ток Iв весьма мал. Это приводит к значительному возрастанию тока Iа из-за резкого уменьшения ЭДС Е, индуцированной в обмотке якоря. Практически при этих условиях возникает резкий бросок тока Iа, сопровождающийся нарушением нормальной коммутации и образованием кругового огня.

Чтобы обеспечить при переходных процессах такое же распределение тока между обмоткой возбуждения и реостатом Rp.в , как и при стационарном режиме, последовательно с реостатом включают индуктивный шунт ИШ (катушку с ферромагнитным сердечником). Индуктивность его выбирают так, чтобы отношение индуктивностей реостата и обмотки возбуждения было приблизительно равно отношению их сопротивлений.

Рассмотренный способ регулирования весьма прост и экономичен, поэтому его широко ты вращения можно осуществить только в сравнительно небольшом диапазоне; обычщением магнитной цепи машины, которое не позволяет увеличивать в значительной степени устойчивости (при сильном уменьшении Ф двигатель идет в «разнос»), а также тем, что при жающее действие реакции якоря и возрастает реактивная ЭДС, что повышает опасность возогня. Поэтому двигатели, предназначенные для работы в режимах глубокого ослабления возбуное значение реактивной ЭДС при номинальном режиме.

Изменение питающего напряжения на зажимах якоря. При изменении питающего на-

ственно формулами

 

(8.116)

 

 

п1

= (U1

- Ia ΣRa )/(сеФ) = U1/(ceФ)- Ia ΣRa /(сеФ) = п01 -

п1;

(8.117)

 

 

п2

= (U2

- Ia ΣRa)/(сеФ) = U2/(ceФ) - Ia ΣRa /(сеФ) = п02 -

п2.

В двигателе с параллельным возбуждением частота вращения при холостом ходе изменяет- е. n02/n01 = U2/U1, а уменьшение частоты вращения, обусловленное воздействием нагрузки, с этим скоростные характеристики двигателя с параллельным возбуждением представляют соханические характеристики n =f(M) получаются из скоростных путем изменения масштаба оси

Рис. 8.69. Схема включения регулировочного реостата в двигателе с последовательным возбуждением

Рис. 8.70. Скоростные и механические характеристики двигателей при регулировании частоты вращения путем изменения напряжения на зажимах якоря

Скоростные и механические характеристики двигателя с последовательным возбуждением строят аналогично (рис. 8.70, б). Регулирование частоты вращения двигателя путем измене¬ния напряжения на зажимах якоря обычно ведут «вниз», т. е. уменьшают напряжение и частоту вращения по сравнению с номинальными.

Изменение направления вращения. Чтобы изменить направление вращения двигателя, необходимо изменить направление электромагнитного момента М, действующего на якорь. Как следует из (8.84), это можно осуществить двумя способами: путем изменения направления тока Iав обмотке якоря или изменения направления магнитного потока Ф, т. е. тока возбуждения. Для этого переключают провода, подводящие ток к обмотке якоря или обмотке возбуждения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]