Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
4
Добавлен:
13.03.2015
Размер:
1.77 Mб
Скачать

Рассмотрим две плоскости

Р1: A1 x+B1 y+C1 z+D1=0

Р2:A2x+B2y+C2z+D2=0, если плоскость Р1 параллельна Р2, то выполняется условие :

(8)

9.) Условие перпендикулярности плоскостей

A1 A2 + B1B 2 + C1 С2 =0 (9)

10.а) угол между плоскостями

A1 x+B1 y+C1 z+D1=0 и A2 x+B2 y+C2 z+D2=0

(10.а)

10.б) угол между векторами

и

(10.б)

10.в) угол между прямой и плоскостью

прямая L с направляющими коэффициентами (l, m, n) и плоскость Ax+By+Cz+D=0

(10.в)

11.) Расстояние между двумя точками

Даны точки А1 (x1,y1,z1) и А2 (x2,y2,z2), расстояние между ними:

(11)

12.) Расстояние от точки M0 (x0,y0,z0) до плоскости

A x+B y+C z+D=0 :

(12)

13.) Выражение векторного произведения через координаты сомножителей , если ,, то

(13)

Первая строка определителя состоит из координатных ортов, вторая из проекций первого сомножителя, третья из проекций второго сомножителя.

14.) Объем параллелепипеда, построенного на векторах

, ,

(14)

знак выбирается таким образом, чтобы объем был положительный.

Рассмотрим несколько примеров применения приведенных формул.

Задача 3.

Даны точки А 1 (1,-1,-2), А 2 (2,1,0), А 3 (-1,0,2), А 4 (0,1,1) .

3.а.) Найти длину ребра А1 А2.

Воспользуемся формулой (11). Расстояние между двумя точками.

Длина ребра А1 А2 равна 3 .

3.б.) Составить уравнение ребра А1 А4 .и грани А1А2А3.

Составим уравнение прямой проходящей через точки

А 1 (1,-1,-2) и А 4 (0,1,1), воспользуемся формулой (2)

;

Найдем уравнение плоскости, проходящей через точки

А 1 (1,-1,-2), А 2 (2,1,0), А 3 (-1,0,2),

Воспользуемся формулой (7)

уравнение грани 6x-8y+5z-4=0, ребра

3.в) Составить уравнение высоты опущенной из точки

А 4 (0,1,1) на плоскость А1А2А3.

Высота проходит через точку А 4 (0,1,1) и перпендикулярна плоскости 6x-8y+5z-4=0, имеющей вектор нормали .

Направляющий вектор высоты совпадает с вектором нормали данной плоскости, следовательно т.к. (2) , тоуравнение искомой высоты.

или в параметрической форме (3)

x=6t, y=1-8t, z=1+5t

3.г.) Найти площадь треугольника А1A2A3 с вершинами

А 1 (1,-1,-2), А 2 (2,1,0), А 3 (-1,0,2),

Площадь треугольника будет равна 1/2 площади параллелограмма, построенного на векторах и. Площадь параллелограмма равна модулю векторного произведения этих векторов. Воспользуемся формулой (13)

;

,

3.д) Найти объем треугольной пирамиды А1A2А3A4 с вершинами

А 1 (1,-1,-2), А 2 (2,1,0), А 3 (-1,0,2), А 4 (0,1,1) .

Искомый объем равен 1/6 объема параллелепипеда, построенного на ребрах А1A2, А1A3, А1A4. Воспользуемся формулой (14)

, ,

Задача 4.

4.1-4.20. Найти собственные числа и собственные векторы матрицы А.

4.1. А =; 4.2. А =;

4. 3. А =; 4.4. А =;

4. 5. А =; 4.6. А =;

4.7. А =; 4.8. А =;

4.9. А =; 4.10. А =;

4. 11. А =; 4.12. А =;

4.13. А =; 4.14. А =;

4.15. А =; 4.16. А =;

4.17. А =; 4.18. А =;

4.19. А =; 4.20. А =.

Указания к задаче 4: собственные числа и собственные векторы

Число называется собственным числом квадратной матрицы А n-ого порядка, если существует такой ненулевой n-мерный вектор Х, что АХ=Х.

Этот ненулевой вектор Х называется собственным вектором матрицы А, соответствующим ее собственному числу .

Множество всех собственных чисел матрицы А совпадает с множеством всех решений уравнения , которое называется характеристическим уравнением матрицы А.

Множество всех собственных векторов матрицы А, соответствующих ее собственному числу , совпадает с множеством всех ненулевых решений системы однородных уравнений

(А -Е) = 0.

Задача 4.

Найти собственные числа и собственные векторы матрицы А.

А = .

Решение: Найдем характеристическое уравнение матрицы А – определитель матрицы А -Е, где Е – единичная матрица, –независимая переменная.

А Е = = .

При вычислении данного определителя использовалось его разложение по элементам третьего столбца.

Найдем теперь собственные числа матрицы А – корни характеристического уравнения . Получаем:

, , .

Далее найдем собственные векторы матрицы А, соответствующие каждому из собственных чисел.

Пусть

Х = – искомый собственный вектор.

Тогда система однородных уравнений (А -Е) = 0 выглядит так:

или

(1)

Эта однородная система линейных уравнений имеет множество решений, так как ее определитель равен нулю.

При система (1) принимает вид:

Общее решение этой системы , где любое число.

В качестве собственного вектора достаточно взять любое частное решение. Пусть, например, , тогда собственный вектор, соответствующий собственному числу , имеет вид

.

При система (1) принимает вид:

Общее решение этой системы , где любое число.

Пусть, например, , тогда собственный вектор, соответствующий собственному числу , имеет вид

.

Аналогично при получаем систему

,

общее решение которой , где любое число.

Пусть , тогда собственный вектор, соответствующий собственному числу , имеет вид

.

Ответ: , , ,

, , .

26