Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уч пособие ЭМС_2.doc
Скачиваний:
2210
Добавлен:
15.03.2015
Размер:
3.96 Mб
Скачать

12.4. Моделирование процессов управления мощностью передатчиков в сетях сухопутной подвижной связи

В системах сухопутной подвижной связи (СПС), построенных с использованием новых радиотехнологий, широко применяется управление мощностью излучения радиопередающих устройств. В системах с технологиями FDMA и/или TDMA обычно имеет место управление мощностью в обратном (восходящем) канале, т. е. в передатчике абонентской станции (линия АС→БС). Управление мощностью в прямом (нисходящем) канале в системах СПС с технологией FDMA обычно отсутствует. В системах с технологией TDMA управление мощностью в прямом канале может иметь место, но может и отсутствовать. В СПС, построенных на основе технологии CDMA, управление мощностью как абонентских, так и базовых станций присутствует всегда.

Методика оценки ЭМС должна отражать принципы функционирования систем, совместимость которых исследуется. Поэтому при исследовании совместимости систем СПС между собой или с системами и РЭС иного назначения необходимо учитывать наличие указанных регулировок. Управление мощностью в системах с разными радиотехнологиями осуществляется по-разному. Рассмотрим их по-отдельности.

Технологии FDMA/TDMA [79], [80]. В системах, использующих технологии FDMA/TDMA, управление мощностью в передатчике осуществляется по абсолютному уровню сигнала в приемнике, связанном с данным передатчиком. Мощность передатчика устанавливается такой, чтобы мощность сигнала на входе приемника имела минимальное (пороговое) значение Sпор, при котором обеспечивается требуемое качество приема полезного сигнала. Алгоритм, моделирующий процесс управления мощностью передатчика, должен также учитывать конечный диапазон возможного изменения мощности передатчика и дискретность перестройки уровней мощности.

Для моделирования процесса управления мощностью передатчика как в прямом, так и в обратном каналах в качестве исходных данных используются:

Sпор – минимальная (пороговая) мощность сигнала на входе приемника, необходимая для приема сигнала с требуемым качеством, дБм;

PT min – минимальная мощность, которую может излучать передатчик, дБм;

PT max – максимальная мощность, которую может излучать передатчик, дБм;

 ΔPT – шаг перестройки мощности передатчика, дБ.

Поскольку перестройка мощности передатчика происходит с некоторым шагом ΔPT, то полное число возможных уровней мощности, излучаемых передатчиком, составляет

n = (PT max PT min)/ΔPT

Мощность сигнала, принимаемая приемником от связанного с ним передатчика, может быть вычислена с использованием следующего выражения

S = PTL + GTR + GRTFade, (12.1)

где S – мощность, принимаемого сигнала, дБм; PT – мощность передатчика, организующего линию связи с данным приемником, дБм; L – медианные потери мощности сигнала при распространении на трассе передатчикприемник, дБ; GTR, GRT – коэффициенты усиления, соответственно, антенны передатчика в направлении на приемник и антенны приемника в направлении на передатчик, дБ; Fade – запас на замирания сигнала, дБ.

Выражение (12.1) позволяет определить мощность передатчика PTН, требующуюся для получения минимально необходимого значения сигнала на входе приемника, а именно:

PTН = Sпор + LGTRGRT + Fade (12.2)

Очевидно, что если полученное из (12.2) значение PTНPT min, то мощность передатчика должна быть установлена равной PT min, поскольку это минимальная мощность, которую может излучать передатчик.

Аналогично, если PTНPT max, то мощность передатчика следует взять равной PT max, поскольку это максимальное значение мощности, которое может излучать передатчик.

Если PT min < PTН < PT max, то, учитывая дискретный характер перестройки мощности передатчика, мощность, которую он должен излучать, можно получить следующим образом. Необходимо определить, между какими уровнями излучаемой мощности передатчика находится принимаемый сигнал S, т. е. найти значение i, для которого удовлетворяется неравенство

Sпор + (i–1) ΔPTSSпор + i ΔPT, (12.3)

где i = 1,…, n.

Отсюда следует, что текущее значение мощности передатчика должно быть изменено на величину –(i – 1)∙ΔPT, дБ.

Окончательно, приведенные выше рассуждения можно записать в виде:

(12.4)

где PTР – мощность передатчика после регулировки мощности; PT – мощность передатчика до регулировки мощности; i = 1,…, n – номер уровня, определяющий требуемое изменение мощности передатчика. Определяется из неравенства

(i –1)∙≤ (SSпор)/ΔPTi,

вытекающего из (12.3).

Во многих случаях пороговое значение полезного сигнала на входе приемника принимается на 3 дБ выше чувствительности приемника PR [дБм], т. е.

Sпор = PR + 3

Именно для такого уровня полезного сигнала в стандартах на соответствующие радиотехнологии определены значения ряда параметров приемных устройств, связанных с воздействием помех на качество приема полезного сигнала, в частности, значения уровней помехи, вызывающей блокирование приемников, и подавление интермодуляционного отклика 3-го порядка в РПУ.

Технология CDMA [79], [80].Технология CDMA используется как для передачи данных, так и для передачи речи.

Современные сотовые системы передачи речи, использующие технологию CDMA, спроектированы так, чтобы обеспечить каждому речевому каналу постоянную скорость передачи, обычно между 8 кб/с и 16 кб/с. В процессе работы систем имеет место кодовое разделение пользователей. Это облегчает моделирование процессов управления мощностью излучений передатчиков АС и БС. Остановимся на некоторых моментах моделирования процедур управления мощностью в прямом и обратном каналах связи в системах CDMA при передачи речи.

В CDMA все абоненты используют одну и ту же несущую частоту. Сигнал каждого абонента кодируется таким образом, что в приемнике другого абонента он проявляется как широкополосный шум. Баланс между качеством приема полезного сигнала и уровнем помех поддерживается посредством регулирования мощности каждого сигнала таким образом, чтобы он поступал на предназначенный приемник с минимальным уровнем, обеспечивающим требуемое отношение сигнал/помеха, SIR.

Управление мощностью в системах CDMA осуществляется как в передатчиках абонентских станций (обратная/восходящая линия АС→БС), так и в передатчиках базовых станций (прямая/нисходящая линия БС→АС). Одной из основных характеристик системы подвижной связи является ее емкость, под которой в рассматриваемом случае, для простоты, можно понимать число пользователей, которое система может одновременно обслуживать с требуемым качеством. Увеличение уровня помех снижает емкость системы.

Для систем цифровой связи стандартной мерой качества является отношение энергии бита сигнала, Eb, к полной спектральной плотности мощности собственного шума и помех, N0, т. е. SIR = Eb/N0, и это отношение должно иметь значение равное требуемому для получения нужного качества приема полезного сигнала, SIRтрб.

Получение требуемого отношения сигнал/помеха достигается в ходе итерационного процесса изменения мощности излучения передатчиков абонентских и базовых станций на основании сравнения текущего отношения сигнал/помеха с требуемым.

Точное моделирование процесса управления мощностью в системе CDMA требует рассмотрения внутрисистемной помехи, которую создают не только пользователи, работающие в рассматриваемой соте системы, но и пользователи соседних сот системы.

Общий алгоритм управления мощностями абонентских и базовых станций в сети CDMA можно записать виде [80]:

. (12.5)

где SIRтрб – требуемое (заданное) отношение сигнал/помеха;  значение отношения сигнал/помеха на n-ой итерации мощности i-го передатчика;  мощность излучения i-го передатчика на n-ой итерации мощности АС или БС.

Обычно полагают, что требуемое качество связи обеспечено, если иSIRтрб отличаются не более, чем на 0.5 дБ.

Хотя общий алгоритм управления мощностями АС и БС имеет одинаковый вид, процедуры оценки текущего значения SIR различаются.

Управление мощностью в обратном канале.

Энергию бита принимаемого сигнала, Eb, Дж/бит, можно оценить из выражения:

Eb = S/R ,

где S – мощность принимаемого сигнала, Вт; R – скорость передачи информации в системе, бит/с.

Что касается полной спектральной плотности мощности собственного шума и помех, N0, то ее значение можно получить следующим образом:

N0 = N + IW.

Здесь N = (nf) Nt – спектральная плотность мощности теплового шума в приемнике БС, где (nf) – коэффициент шума приемника (в относительных единицах); Nt  спектральная плотность мощности теплового шума при комнатной температуре.

IW = (Iinn + Iout + Iext)/W – спектральная плотность мощности внешних помех, где Iinn – полная (суммарная) мощность помех на входе приемника БС, создаваемая пользователями, работающими в рассматриваемой соте (или секторе при работе БС с секторными зонами обслуживания); Iout – суммарная мощность помех на входе приемника БС, создаваемая пользователями, работающими в других сотах (секторах) сети CDMA; Iext – мощность внесистемной помехи, т. е. помехи от системы, не входящей в рассматриваемую сеть. Важное слагаемое при оценке межсистемной ЭМС; W – ширина полосы частот, используемая рассматриваемой системой для передачи полезного сигнала.

Теперь нетрудно найти, что

(12.6)

где Nr = (nf) Nt W – мощность шума в приемнике БС; q = W/R – усиление сигнала за счет обработки.

Отношение Eb/N0 в обратном канале CDMA зависит также от речевой активности абонентов. Отметим, что когда в передаче речи от мобильного абонента к базовой станции имеют место паузы, передатчик мобильной станции не излучает, а это приводит к тому, что уровень помехи в приемнике базовой станции снижается и повышается отношение сигнал/помеха. В формулу (12.6) речевая активность напрямую не входит. Чтобы учесть это обстоятельство, в это выражение можно ввести коэффициент речевой активности  (0 ≤  ≤ 1), поставив его качестве множителя перед слагаемым, заключенным в круглые скобки, в знаменателе последнего равенства (12.6). Однако, исследования совместимости, как внутрисетевой, так и межсистемной, для систем CDMA чаще всего проводят, используя статистическое имитационное моделирование. В этом случае речевая активность пользователей сети имитируется в процессе проведения статистического эксперимента посредством назначения состояний пользователей (активный – неактивный) при каждом прогоне программы.

Выражение (12.6) используется в итерационном процессе управления мощностью передатчика АС, который связан с i-ым приемником БС. Для этого приемника оно может быть записано в виде

, (12.7)

где n – номер итерации

Управление мощностью в прямом канале.

Для прямого канала основными ограничениями, определяющими емкость сети (число одновременно обслуживаемых абонентов/пользователей), являются мощность, излучаемая передатчиком базовой станции в его зоне обслуживания, и требуемое отношение (Eb/N0)трб в мобильном приемнике. Особенность управления мощностью в прямом канале состоит в том, что полная мощность, излучаемая передатчиком БС, распределяется между каналами трафика, каналом пилот-сигнала и другими служебными каналами (каналом синхронизации и пейджинговыми каналами). При этом управление мощностью передатчика выполняется только в каналах трафика. Мощность, излучаемая в других каналах, постоянна и составляет определенную долю от максимальной мощности, излучаемой передатчиком базовой станции, PБС max (обычно около 20%). Мощность, приходящаяся на один канал трафика, зависит от числа пользователей, работающих в сети одновременно. Все каналы трафика совместно используют доступную для них мощность, которая делится среди активных пользователей таким образом, чтобы обеспечить в их приемниках минимально необходимое для получения заданного качества связи отношение (Eb/N0)трб. Естественно, что, учитывая ограниченность максимальной мощности передатчика БС, число абонентов, которое может обслужить БС, также ограничено. Чем дальше находится мобильная станция (МС) от базовой станции, тем больше требуется мощность в канале трафика этой МС от передатчика БС, которая обеспечит необходимое отношение сигнал/помеха в приемнике МС. Чтобы избежать полного поглощения ресурсов передатчика БС одним единственным пользователем, мощность, которая может излучаться в одном канале трафика, ограничена.

Помеха, которую испытывает приемник мобильной станции, включает:

 мощность теплового шума приемника МС (с учетом его коэффициента шума), Nr;

 мощность соканальной помехи от линий с другими МС, которые обслуживает рассматриваемая БС (включая сигналы телефонных каналов, канал пилот-сигнала, служебные каналы), Iinn;

 мощность соканальной помехи от других БС, обслуживающих мобильные средства за пределами зоны обслуживания рассматриваемой БС, Iout;

 мощность внешней помехи, Iext.

Следует учесть только, что в отличие от обратной линии, где помеха рассматривается на входе приемника БС, а составляющие помехи Iinn и Iout обусловлены излучениями передатчиков мобильных станций, в прямой линии помеха рассматривается на входе приемника МС, а составляющие помехи Iinn и Iout образованы излучениями передатчиков базовых станций сети CDMA.

Сигналы, излучаемые передатчиком БС в зоне ее обслуживания, являются ортогональными, что должно минимизировать помехи между линиями внутри зоны обслуживания. Многолучевое распространение, характерное для систем подвижной связи, приводит к частичному нарушению ортогональности и увеличению помех между сигналами базовой станции, используемыми в ее каналах трафика. Сигналы, поступающие от других БС, видны, как широкополосный шум.

С учетом сказанного выражение для отношения сигнал/помеха на n-ой итерации в приемнике i-ой мобильной станции можно записать в виде:

, (12.8)

где β – коэффициент ортогональности сигналов рассматриваемой БС в прямом канале (0 ≤ β ≤1 и β = 1 соответствует полностью ортогональным сигналам). Стандатное значение β = 0.4.

Отношение Eb/N0 у каждой мобильной станции будет свое, и оно меняется при изменении положения мобильной станции. Выражение (12.8) используется в итерационном процессе управления мощностью в каналах трафика базовой станции. При анализе ЭМС для каждой мобильной станции должно быть определено значение отношения (Eb/N0)трб, которое, зависит от скорости движения мобильной станции, ее состояния мягкого хэндовера (т. е. наличия связи с более чем одной базовой станцией) и некоторых других параметров. При управлении мощностью базовой станции для каждой мобильной станции, используя (12.8), вычисляют и сравнивают его с (Eb/N0)трб, которое необходимо иметь этой МС для получения нужного качества связи. Если < (Eb/N0)трб, то мощность базовой станции в канале трафика данной МС увеличивается, если же > (Eb/N0)трб, то мощность базовой станции в канале трафика данной МС уменьшается. Это происходит до тех пор, пока разность между текущим значением и (Eb/N0)трб будет составлять не более 0.5 дБ.

Уровень мощности, излучаемый в канале трафика каждого пользователя, определяется исходя из потерь на трассе распространения. Он проверяется относительно максимально допустимой мощности в канале. В результате такой проверки некоторые пользователи могут быть удалены из системы.

Теперь, когда уровни мощности в каналах трафика определены, можно оценить полную мощность каждой БС. Она будет состоять из мощности всех каналов трафика данной БС, Pтрф. рсч, мощности канала пилот-сигнала, Pплт, и мощности всех служебных каналов, Pслж, т. е.

PБС рсч= Pтрф. рсч+ Pплт + Pслж (12.9)

Если PБС рсч > PБС max, где PБС max – максимальная разрешенная мощность передатчика БС, то для этой БС выполняется масштабирование мощности, причем масштабирование выполняется только для каналов трафика. Уровни мощности служебных каналов и канала пилот-сигнала, как отмечалось ранее, остаются постоянными и равны определенной постоянной части (проценту) от максимальной разрешенной мощности базовой станции.

Таким образом, максимальная мощность, которая может быть использована в каналах трафика Pтрф max , составляет:

Pтрф max = PБС max Pплт Pслж

Расчетная мощность, которая используется в каналах трафика, как следует из (12.8), составляет:

Pтрф. рсч = PБС рсч Pплт Pслж

Если для некоторой БС Pтрф. рсч > Pтрф max ,то мощности во всех каналах трафика этой БС масштабируются посредством умножения их значений, полученных в процессе моделирования, на масштабный множитель. Масштабный множитель, который используется применительно к уровням мощности каналов трафика, определяется как

Scaling = Pтрф max/ Pтрф. рсч

Для некоторых каналов, прошедших масштабирование, может не выполняться требование необходимого отношения сигнал/помеха. Такие каналы обычно считают потерянными из-за действия помехи (внутрисистемной или межсистемной). Относительная доля каналов, потерянных в результате действия помех, может использоваться для оценки качества работы сети в условиях помех при анализе ЭМС.

Соседние файлы в предмете Основы радиоэлектроники и связи